All Downloads are FREE. Search and download functionalities are using the official Maven repository.

g0601_0700.s0629_k_inverse_pairs_array.Solution Maven / Gradle / Ivy

There is a newer version: 1.38
Show newest version
package g0601_0700.s0629_k_inverse_pairs_array;

// #Hard #Dynamic_Programming #2022_03_21_Time_19_ms_(94.44%)_Space_41.1_MB_(94.44%)

/**
 * 629 - K Inverse Pairs Array\.
 *
 * Hard
 *
 * For an integer array `nums`, an **inverse pair** is a pair of integers `[i, j]` where `0 <= i < j < nums.length` and `nums[i] > nums[j]`.
 *
 * Given two integers n and k, return the number of different arrays consist of numbers from `1` to `n` such that there are exactly `k` **inverse pairs**. Since the answer can be huge, return it **modulo** 109 + 7.
 *
 * **Example 1:**
 *
 * **Input:** n = 3, k = 0
 *
 * **Output:** 1
 *
 * **Explanation:** Only the array [1,2,3] which consists of numbers from 1 to 3 has exactly 0 inverse pairs.
 *
 * **Example 2:**
 *
 * **Input:** n = 3, k = 1
 *
 * **Output:** 2
 *
 * **Explanation:** The array [1,3,2] and [2,1,3] have exactly 1 inverse pair.
 *
 * **Constraints:**
 *
 * *   `1 <= n <= 1000`
 * *   `0 <= k <= 1000`
**/
public class Solution {
    public int kInversePairs(int n, int k) {
        k = Math.min(k, n * (n - 1) / 2 - k);
        if (k < 0) {
            return 0;
        }
        int[] dp = new int[k + 1];
        int[] dp1 = new int[k + 1];
        dp[0] = 1;
        dp1[0] = 1;
        int mod = 1_000_000_007;
        for (int i = 1; i <= n; i++) {
            int[] temp = dp;
            dp = dp1;
            dp1 = temp;
            for (int j = 1, m = Math.min(k, i * (i - 1) / 2); j <= m; j++) {
                dp[j] = (dp1[j] + dp[j - 1] - (j >= i ? dp1[j - i] : 0)) % mod;
                if (dp[j] < 0) {
                    dp[j] += mod;
                }
            }
        }
        return dp[k];
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy