g0701_0800.s0786_k_th_smallest_prime_fraction.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0701_0800.s0786_k_th_smallest_prime_fraction;
// #Medium #Array #Binary_Search #Heap_Priority_Queue
// #2022_03_26_Time_2_ms_(96.60%)_Space_42.4_MB_(86.79%)
/**
* 786 - K-th Smallest Prime Fraction\.
*
* Hard
*
* You are given a sorted integer array `arr` containing `1` and **prime** numbers, where all the integers of `arr` are unique. You are also given an integer `k`.
*
* For every `i` and `j` where `0 <= i < j < arr.length`, we consider the fraction `arr[i] / arr[j]`.
*
* Return _the_ kth
_smallest fraction considered_. Return your answer as an array of integers of size `2`, where `answer[0] == arr[i]` and `answer[1] == arr[j]`.
*
* **Example 1:**
*
* **Input:** arr = [1,2,3,5], k = 3
*
* **Output:** [2,5]
*
* **Explanation:**
*
* The fractions to be considered in sorted order are:
* 1/5, 1/3, 2/5, 1/2, 3/5, and 2/3.
* The third fraction is 2/5.
*
* **Example 2:**
*
* **Input:** arr = [1,7], k = 1
*
* **Output:** [1,7]
*
* **Constraints:**
*
* * `2 <= arr.length <= 1000`
* * 1 <= arr[i] <= 3 * 104
* * `arr[0] == 1`
* * `arr[i]` is a **prime** number for `i > 0`.
* * All the numbers of `arr` are **unique** and sorted in **strictly increasing** order.
* * `1 <= k <= arr.length * (arr.length - 1) / 2`
**/
public class Solution {
public int[] kthSmallestPrimeFraction(int[] arr, int k) {
int n = arr.length;
double low = 0;
double high = 1.0;
while (low < high) {
double mid = (low + high) / 2;
int[] res = getFractionsLessThanMid(arr, n, mid);
if (res[0] == k) {
return new int[] {arr[res[1]], arr[res[2]]};
} else if (res[0] > k) {
high = mid;
} else {
low = mid;
}
}
return new int[] {};
}
private int[] getFractionsLessThanMid(int[] arr, int n, double mid) {
double maxLessThanMid = 0.0;
// stores indices of max fraction less than mid;
int x = 0;
int y = 0;
// for storing fractions less than mid
int total = 0;
int j = 1;
for (int i = 0; i < n - 1; i++) {
// while fraction is greater than mid increment j
while (j < n && arr[i] > arr[j] * mid) {
j++;
}
if (j == n) {
break;
}
// j fractions greater than mid, n-j fractions smaller than mid, add fractions smaller
// than mid to total
total += (n - j);
double fraction = (double) arr[i] / arr[j];
if (fraction > maxLessThanMid) {
maxLessThanMid = fraction;
x = i;
y = j;
}
}
return new int[] {total, x, y};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy