g0701_0800.s0790_domino_and_tromino_tiling.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0701_0800.s0790_domino_and_tromino_tiling;
// #Medium #Dynamic_Programming #2022_03_26_Time_0_ms_(100.00%)_Space_42_MB_(14.39%)
/**
* 790 - Domino and Tromino Tiling\.
*
* Medium
*
* You have two types of tiles: a `2 x 1` domino shape and a tromino shape. You may rotate these shapes.
*
* ![](https://assets.leetcode.com/uploads/2021/07/15/lc-domino.jpg)
*
* Given an integer n, return _the number of ways to tile an_ `2 x n` _board_. Since the answer may be very large, return it **modulo** 109 + 7
.
*
* In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.
*
* **Example 1:**
*
* ![](https://assets.leetcode.com/uploads/2021/07/15/lc-domino1.jpg)
*
* **Input:** n = 3
*
* **Output:** 5
*
* **Explanation:** The five different ways are show above.
*
* **Example 2:**
*
* **Input:** n = 1
*
* **Output:** 1
*
* **Constraints:**
*
* * `1 <= n <= 1000`
**/
public class Solution {
public int numTilings(int n) {
if (n == 1) {
return 1;
} else if (n == 2) {
return 2;
} else if (n == 3) {
return 5;
} else if (n == 4) {
return 11;
} else if (n == 5) {
return 24;
}
long[] dp = new long[n + 1];
dp[0] = 0;
dp[1] = 1;
dp[2] = 2;
dp[3] = 5;
dp[4] = 11;
dp[5] = 24;
dp[6] = 53;
for (int i = 7; i <= n; i++) {
dp[i] = ((dp[i - 1] * 2) + dp[i - 3]) % 1000000007;
}
return (int) dp[n] % 1000000007;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy