![JAR search and dependency download from the Maven repository](/logo.png)
g0801_0900.s0882_reachable_nodes_in_subdivided_graph.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0801_0900.s0882_reachable_nodes_in_subdivided_graph;
// #Hard #Heap_Priority_Queue #Graph #Shortest_Path
// #2022_03_28_Time_28_ms_(95.85%)_Space_66.3_MB_(87.56%)
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.PriorityQueue;
import java.util.Queue;
/**
* 882 - Reachable Nodes In Subdivided Graph\.
*
* Hard
*
* You are given an undirected graph (the **"original graph"** ) with `n` nodes labeled from `0` to `n - 1`. You decide to **subdivide** each edge in the graph into a chain of nodes, with the number of new nodes varying between each edge.
*
* The graph is given as a 2D array of `edges` where edges[i] = [ui, vi, cnti]
indicates that there is an edge between nodes ui
and vi
in the original graph, and cnti
is the total number of new nodes that you will **subdivide** the edge into. Note that cnti == 0
means you will not subdivide the edge.
*
* To **subdivide** the edge [ui, vi]
, replace it with (cnti + 1)
new edges and cnti
new nodes. The new nodes are x1
, x2
, ..., xcnti
, and the new edges are [ui, x1]
, [x1, x2]
, [x2, x3]
, ..., [xcnti-1, xcnti]
, [xcnti, vi]
.
*
* In this **new graph** , you want to know how many nodes are **reachable** from the node `0`, where a node is **reachable** if the distance is `maxMoves` or less.
*
* Given the original graph and `maxMoves`, return _the number of nodes that are **reachable** from node_ `0` _in the new graph_.
*
* **Example 1:**
*
* ![](https://s3-lc-upload.s3.amazonaws.com/uploads/2018/08/01/origfinal.png)
*
* **Input:** edges = \[\[0,1,10],[0,2,1],[1,2,2]], maxMoves = 6, n = 3
*
* **Output:** 13
*
* **Explanation:** The edge subdivisions are shown in the image above. The nodes that are reachable are highlighted in yellow.
*
* **Example 2:**
*
* **Input:** edges = \[\[0,1,4],[1,2,6],[0,2,8],[1,3,1]], maxMoves = 10, n = 4
*
* **Output:** 23
*
* **Example 3:**
*
* **Input:** edges = \[\[1,2,4],[1,4,5],[1,3,1],[2,3,4],[3,4,5]], maxMoves = 17, n = 5
*
* **Output:** 1
*
* **Explanation:** Node 0 is disconnected from the rest of the graph, so only node 0 is reachable.
*
* **Constraints:**
*
* * 0 <= edges.length <= min(n * (n - 1) / 2, 104)
* * `edges[i].length == 3`
* * 0 <= ui < vi < n
* * There are **no multiple edges** in the graph.
* * 0 <= cnti <= 104
* * 0 <= maxMoves <= 109
* * `1 <= n <= 3000`
**/
@SuppressWarnings("unchecked")
public class Solution {
public int reachableNodes(int[][] edges, int maxMoves, int n) {
// Build graph
List[] graph = new List[n];
for (int i = 0; i < n; ++i) {
graph[i] = new ArrayList<>();
}
for (int[] edge : edges) {
// how many nodes between u and v(inclusive)
// vvvvvvvvvvvvvvv
int u = edge[0];
int v = edge[1];
int w = edge[2] + 1;
graph[u].add(new int[] {v, w});
graph[v].add(new int[] {u, w});
}
// Do dijkstra
Queue queue = new PriorityQueue<>((a, b) -> Integer.compare(a[1], b[1]));
int[] dist = new int[n];
Arrays.fill(dist, Integer.MAX_VALUE >> 1);
dist[0] = 0;
queue.add(new int[] {0, dist[0]});
while (!queue.isEmpty()) {
int[] curr = queue.poll();
int u = curr[0];
int d = curr[1];
if (d != dist[u]) {
continue;
}
for (int[] next : graph[u]) {
int v = next[0];
int w = next[1];
if (dist[u] + w < dist[v]) {
dist[v] = dist[u] + w;
queue.add(new int[] {v, dist[v]});
}
}
}
// Count reachable nodes
int ans = 0;
for (int i = 0; i < n; i++) {
if (dist[i] <= maxMoves) {
ans++;
}
}
for (int[] edge : edges) {
int u = edge[0];
int v = edge[1];
int w = edge[2];
// Nodes can be extended from (u, v) in at most maxMoves steps
// if maxMoves - dist[u] < 0, then l = 0
int l = Math.max(0, maxMoves - dist[u]);
int r = Math.max(0, maxMoves - dist[v]);
// l + r shouldn't be greater than w
ans += Math.min(w, l + r);
}
return ans;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy