g0801_0900.s0886_possible_bipartition.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0801_0900.s0886_possible_bipartition;
// #Medium #Depth_First_Search #Breadth_First_Search #Graph #Union_Find
// #Graph_Theory_I_Day_14_Graph_Theory #2022_03_28_Time_20_ms_(80.12%)_Space_75.6_MB_(32.57%)
import java.util.ArrayList;
import java.util.List;
/**
* 886 - Possible Bipartition\.
*
* Medium
*
* We want to split a group of `n` people (labeled from `1` to `n`) into two groups of **any size**. Each person may dislike some other people, and they should not go into the same group.
*
* Given the integer `n` and the array `dislikes` where dislikes[i] = [ai, bi]
indicates that the person labeled ai
does not like the person labeled bi
, return `true` _if it is possible to split everyone into two groups in this way_.
*
* **Example 1:**
*
* **Input:** n = 4, dislikes = \[\[1,2],[1,3],[2,4]]
*
* **Output:** true
*
* **Explanation:** group1 [1,4] and group2 [2,3].
*
* **Example 2:**
*
* **Input:** n = 3, dislikes = \[\[1,2],[1,3],[2,3]]
*
* **Output:** false
*
* **Example 3:**
*
* **Input:** n = 5, dislikes = \[\[1,2],[2,3],[3,4],[4,5],[1,5]]
*
* **Output:** false
*
* **Constraints:**
*
* * `1 <= n <= 2000`
* * 0 <= dislikes.length <= 104
* * `dislikes[i].length == 2`
* * `1 <= dislikes[i][j] <= n`
* * ai < bi
* * All the pairs of `dislikes` are **unique**.
**/
@SuppressWarnings("unchecked")
public class Solution {
public boolean possibleBipartition(int n, int[][] dislikes) {
// build graph
Graph g = new Graph(n);
for (int[] dislike : dislikes) {
g.addEdge(dislike[0] - 1, dislike[1] - 1);
}
boolean[] marked = new boolean[n];
boolean[] colors = new boolean[n];
for (int v = 0; v < n; v++) {
if (!marked[v] && !checkBipartiteDFS(g, marked, colors, v)) {
// No need to run on other connected components if one component has failed.
return false;
}
}
return true;
}
private boolean checkBipartiteDFS(Graph g, boolean[] marked, boolean[] colors, int v) {
marked[v] = true;
for (int w : g.adj(v)) {
if (!marked[w]) {
colors[w] = !colors[v];
if (!checkBipartiteDFS(g, marked, colors, w)) {
// this is to break for other neighbours
return false;
}
} else if (colors[v] == colors[w]) {
return false;
}
}
return true;
}
private static class Graph {
private ArrayList[] adj;
public Graph(int v) {
adj = new ArrayList[v];
for (int i = 0; i < v; i++) {
adj[i] = new ArrayList<>();
}
}
private void addEdge(int v, int w) {
adj[v].add(w);
adj[w].add(v);
}
private List adj(int v) {
return adj[v];
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy