![JAR search and dependency download from the Maven repository](/logo.png)
g0901_1000.s0907_sum_of_subarray_minimums.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0901_1000.s0907_sum_of_subarray_minimums;
// #Medium #Array #Dynamic_Programming #Stack #Monotonic_Stack
// #2022_03_28_Time_20_ms_(95.88%)_Space_64_MB_(76.91%)
/**
* 907 - Sum of Subarray Minimums\.
*
* Medium
*
* Given an array of integers arr, find the sum of `min(b)`, where `b` ranges over every (contiguous) subarray of `arr`. Since the answer may be large, return the answer **modulo** 109 + 7
.
*
* **Example 1:**
*
* **Input:** arr = [3,1,2,4]
*
* **Output:** 17
*
* **Explanation:**
*
* Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4].
*
* Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1. Sum is 17.
*
* **Example 2:**
*
* **Input:** arr = [11,81,94,43,3]
*
* **Output:** 444
*
* **Constraints:**
*
* * 1 <= arr.length <= 3 * 104
* * 1 <= arr[i] <= 3 * 104
**/
public class Solution {
private static final int MOD = 1_000_000_007;
private int calculateRight(int i, int start, int[] right, int[] arr, int len) {
if (start >= len) {
return 0;
}
if (arr[start] < arr[i]) {
return 0;
}
return (1 + right[start] + calculateRight(i, start + right[start] + 1, right, arr, len))
% MOD;
}
private int calculateLeft(int i, int start, int[] left, int[] arr, int len) {
if (start < 0) {
return 0;
}
if (arr[start] <= arr[i]) {
return 0;
}
return (1 + left[start] + calculateLeft(i, start - left[start] - 1, left, arr, len)) % MOD;
}
public int sumSubarrayMins(int[] arr) {
int len = arr.length;
int[] right = new int[len];
int[] left = new int[len];
right[len - 1] = 0;
for (int i = len - 2; i >= 0; --i) {
right[i] = calculateRight(i, i + 1, right, arr, len);
}
left[0] = 0;
for (int i = 1; i < len; ++i) {
left[i] = calculateLeft(i, i - 1, left, arr, len);
}
int answer = 0;
for (int i = 0; i < len; ++i) {
long modl = 1_000_000_007;
answer += (int) (((((1 + left[i]) * (long) (1 + right[i])) % modl) * arr[i]) % modl);
answer %= MOD;
}
return answer;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy