g0901_1000.s0931_minimum_falling_path_sum.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0901_1000.s0931_minimum_falling_path_sum;
// #Medium #Array #Dynamic_Programming #Matrix #Dynamic_Programming_I_Day_13
// #2022_03_30_Time_4_ms_(72.19%)_Space_48.3_MB_(12.49%)
/**
* 931 - Minimum Falling Path Sum\.
*
* Medium
*
* Given an `n x n` array of integers `matrix`, return _the **minimum sum** of any **falling path** through_ `matrix`.
*
* A **falling path** starts at any element in the first row and chooses the element in the next row that is either directly below or diagonally left/right. Specifically, the next element from position `(row, col)` will be `(row + 1, col - 1)`, `(row + 1, col)`, or `(row + 1, col + 1)`.
*
* **Example 1:**
*
* ![](https://assets.leetcode.com/uploads/2021/11/03/failing1-grid.jpg)
*
* **Input:** matrix = \[\[2,1,3],[6,5,4],[7,8,9]]
*
* **Output:** 13
*
* **Explanation:** There are two falling paths with a minimum sum as shown.
*
* **Example 2:**
*
* ![](https://assets.leetcode.com/uploads/2021/11/03/failing2-grid.jpg)
*
* **Input:** matrix = \[\[-19,57],[-40,-5]]
*
* **Output:** -59
*
* **Explanation:** The falling path with a minimum sum is shown.
*
* **Constraints:**
*
* * `n == matrix.length == matrix[i].length`
* * `1 <= n <= 100`
* * `-100 <= matrix[i][j] <= 100`
**/
public class Solution {
public int minFallingPathSum(int[][] matrix) {
int l = matrix[0].length;
int[] arr = matrix[0];
for (int i = 1; i < matrix.length; i++) {
int[] cur = new int[l];
for (int j = 0; j < l; j++) {
int left = Integer.MAX_VALUE;
int right = Integer.MAX_VALUE;
int curCell = arr[j];
if (j > 0) {
left = arr[j - 1];
}
if (j < l - 1) {
right = arr[j + 1];
}
cur[j] = matrix[i][j] + Math.min(left, Math.min(right, curCell));
}
arr = cur;
}
int min = Integer.MAX_VALUE;
for (int i = 0; i < l; i++) {
if (arr[i] < min) {
min = arr[i];
}
}
return min;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy