g0901_1000.s0980_unique_paths_iii.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g0901_1000.s0980_unique_paths_iii;
// #Hard #Array #Matrix #Bit_Manipulation #Backtracking
// #2022_03_31_Time_0_ms_(100.00%)_Space_39.3_MB_(98.32%)
/**
* 980 - Unique Paths III\.
*
* Hard
*
* You are given an `m x n` integer array `grid` where `grid[i][j]` could be:
*
* * `1` representing the starting square. There is exactly one starting square.
* * `2` representing the ending square. There is exactly one ending square.
* * `0` representing empty squares we can walk over.
* * `-1` representing obstacles that we cannot walk over.
*
* Return _the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once_.
*
* **Example 1:**
*
* ![](https://assets.leetcode.com/uploads/2021/08/02/lc-unique1.jpg)
*
* **Input:** grid = \[\[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
*
* **Output:** 2
*
* **Explanation:** We have the following two paths:
*
* 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
*
* 2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
*
* **Example 2:**
*
* ![](https://assets.leetcode.com/uploads/2021/08/02/lc-unique2.jpg)
*
* **Input:** grid = \[\[1,0,0,0],[0,0,0,0],[0,0,0,2]]
*
* **Output:** 4
*
* **Explanation:** We have the following four paths:
*
* 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
*
* 2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
*
* 3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
*
* 4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
*
* **Example 3:**
*
* ![](https://assets.leetcode.com/uploads/2021/08/02/lc-unique3-.jpg)
*
* **Input:** grid = \[\[0,1],[2,0]]
*
* **Output:** 0
*
* **Explanation:** There is no path that walks over every empty square exactly once.
*
* Note that the starting and ending square can be anywhere in the grid.
*
* **Constraints:**
*
* * `m == grid.length`
* * `n == grid[i].length`
* * `1 <= m, n <= 20`
* * `1 <= m * n <= 20`
* * `-1 <= grid[i][j] <= 2`
* * There is exactly one starting cell and one ending cell.
**/
public class Solution {
private final int[] row = {0, 0, 1, -1};
private final int[] col = {1, -1, 0, 0};
private int isSafe(int[][] grid, int rows, int cols, int i, int j) {
if (i < 0 || j < 0 || i >= rows || j >= cols || grid[i][j] == -1) {
return 0;
}
if (grid[i][j] == 2) {
for (int l = 0; l < rows; l++) {
for (int m = 0; m < cols; m++) {
if (grid[l][m] == 0) {
/* Return 0 if all zeros in the path are not covered */
return 0;
}
}
}
/* Return 1, as we covered all zeros in the path */
return 1;
}
/* mark as visited */
grid[i][j] = -1;
int result = 0;
for (int k = 0; k < 4; k++) {
/* travel in all four directions (up,down,right,left) */
result = result + isSafe(grid, rows, cols, (i + row[k]), (j + col[k]));
}
/* Mark unvisited again to backtrack */
grid[i][j] = 0;
return result;
}
public int uniquePathsIII(int[][] grid) {
int rows = grid.length;
int cols = grid[0].length;
int result = 0;
for (int k = 0; k < rows; k++) {
for (int m = 0; m < cols; m++) {
if (grid[k][m] == 1) {
/* find indexes where 1 is located and start covering paths */
result = isSafe(grid, rows, cols, k, m);
break;
}
}
}
return result;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy