g1201_1300.s1201_ugly_number_iii.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g1201_1300.s1201_ugly_number_iii;
// #Medium #Math #Binary_Search #Number_Theory #Binary_Search_II_Day_20
// #2022_03_08_Time_0_ms_(100.00%)_Space_41.8_MB_(7.39%)
/**
* 1201 - Ugly Number III\.
*
* Medium
*
* An **ugly number** is a positive integer that is divisible by `a`, `b`, or `c`.
*
* Given four integers `n`, `a`, `b`, and `c`, return the nth
**ugly number**.
*
* **Example 1:**
*
* **Input:** n = 3, a = 2, b = 3, c = 5
*
* **Output:** 4
*
* **Explanation:** The ugly numbers are 2, 3, 4, 5, 6, 8, 9, 10... The 3rd is 4.
*
* **Example 2:**
*
* **Input:** n = 4, a = 2, b = 3, c = 4
*
* **Output:** 6
*
* **Explanation:** The ugly numbers are 2, 3, 4, 6, 8, 9, 10, 12... The 4th is 6.
*
* **Example 3:**
*
* **Input:** n = 5, a = 2, b = 11, c = 13
*
* **Output:** 10
*
* **Explanation:** The ugly numbers are 2, 4, 6, 8, 10, 11, 12, 13... The 5th is 10.
*
* **Constraints:**
*
* * 1 <= n, a, b, c <= 109
* * 1 <= a * b * c <= 1018
* * It is guaranteed that the result will be in range [1, 2 * 109]
.
**/
public class Solution {
private long getLcm(long a, long b) {
long mx = a;
long mn = b;
if (a < b) {
mx = b;
mn = a;
}
while (mn != 0) {
long tmp = mn;
mn = mx % mn;
mx = tmp;
}
return (a * b) / mx;
}
public int nthUglyNumber(int n, int a, int b, int c) {
long ab = getLcm(a, b);
long ac = getLcm(a, c);
long bc = getLcm(b, c);
long abc = getLcm(a, bc);
long left = 1;
long right = 2000000001;
if (a != 0 && b != 0 && c != 0 && bc != 0) {
while (left < right) {
long mid = left + (right - left) / 2;
if (mid / a + mid / b + mid / c - mid / ab - mid / ac - mid / bc + mid / abc >= n) {
right = mid;
} else {
left = mid + 1;
}
}
}
return (int) left;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy