g1801_1900.s1889_minimum_space_wasted_from_packaging.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g1801_1900.s1889_minimum_space_wasted_from_packaging;
// #Hard #Array #Sorting #Binary_Search #Prefix_Sum
// #2022_05_09_Time_98_ms_(45.92%)_Space_128.3_MB_(32.65%)
import java.util.Arrays;
/**
* 1889 - Minimum Space Wasted From Packaging\.
*
* Hard
*
* You have `n` packages that you are trying to place in boxes, **one package in each box**. There are `m` suppliers that each produce boxes of **different sizes** (with infinite supply). A package can be placed in a box if the size of the package is **less than or equal to** the size of the box.
*
* The package sizes are given as an integer array `packages`, where `packages[i]` is the **size** of the ith
package. The suppliers are given as a 2D integer array `boxes`, where `boxes[j]` is an array of **box sizes** that the jth
supplier produces.
*
* You want to choose a **single supplier** and use boxes from them such that the **total wasted space** is **minimized**. For each package in a box, we define the space **wasted** to be `size of the box - size of the package`. The **total wasted space** is the sum of the space wasted in **all** the boxes.
*
* * For example, if you have to fit packages with sizes `[2,3,5]` and the supplier offers boxes of sizes `[4,8]`, you can fit the packages of size-`2` and size-`3` into two boxes of size-`4` and the package with size-`5` into a box of size-`8`. This would result in a waste of `(4-2) + (4-3) + (8-5) = 6`.
*
* Return _the **minimum total wasted space** by choosing the box supplier **optimally** , or_ `-1` _if it is **impossible** to fit all the packages inside boxes._ Since the answer may be **large** , return it **modulo** 109 + 7
.
*
* **Example 1:**
*
* **Input:** packages = [2,3,5], boxes = \[\[4,8],[2,8]]
*
* **Output:** 6
*
* **Explanation:** It is optimal to choose the first supplier, using two size-4 boxes and one size-8 box.
*
* The total waste is (4-2) + (4-3) + (8-5) = 6.
*
* **Example 2:**
*
* **Input:** packages = [2,3,5], boxes = \[\[1,4],[2,3],[3,4]]
*
* **Output:** -1
*
* **Explanation:** There is no box that the package of size 5 can fit in.
*
* **Example 3:**
*
* **Input:** packages = [3,5,8,10,11,12], boxes = \[\[12],[11,9],[10,5,14]]
*
* **Output:** 9
*
* **Explanation:** It is optimal to choose the third supplier, using two size-5 boxes, two size-10 boxes, and two size-14 boxes.
*
* The total waste is (5-3) + (5-5) + (10-8) + (10-10) + (14-11) + (14-12) = 9.
*
* **Constraints:**
*
* * `n == packages.length`
* * `m == boxes.length`
* * 1 <= n <= 105
* * 1 <= m <= 105
* * 1 <= packages[i] <= 105
* * 1 <= boxes[j].length <= 105
* * 1 <= boxes[j][k] <= 105
* * sum(boxes[j].length) <= 105
* * The elements in `boxes[j]` are **distinct**.
**/
@SuppressWarnings("java:S135")
public class Solution {
private static final int MOD = 1_000_000_007;
public int minWastedSpace(int[] packages, int[][] boxes) {
int numPackages = packages.length;
Arrays.sort(packages);
long[] preSum = new long[numPackages];
preSum[0] = packages[0];
for (int i = 1; i < packages.length; i++) {
preSum[i] = packages[i] + preSum[i - 1];
}
long ans = Long.MAX_VALUE;
for (int[] box : boxes) {
Arrays.sort(box);
// Box of required size not present
if (packages[numPackages - 1] > box[box.length - 1]) {
continue;
}
// Find the total space wasted
long totalWastedSpace = 0;
int prev = -1;
for (int j : box) {
if (prev == packages.length - 1) {
break;
}
if (j < packages[0] || j < packages[prev + 1]) {
continue;
}
// Find up to which package the current box can fit
int upper = findUpperBound(packages, j);
if (upper == -1) {
continue;
}
// The current box will be able to handle the packages from
// prev + 1 to the upper index
long totalSpace = ((long) upper - (long) prev) * j;
long packageSum = preSum[upper] - (prev >= 0 ? preSum[prev] : 0);
long spaceWastedCurr = totalSpace - packageSum;
totalWastedSpace += spaceWastedCurr;
prev = upper;
}
ans = Math.min(ans, totalWastedSpace);
}
return ans == Long.MAX_VALUE ? -1 : (int) (ans % MOD);
}
private int findUpperBound(int[] packages, int key) {
int l = 0;
int h = packages.length;
while (l < h) {
int m = l + (h - l) / 2;
if (packages[m] <= key) {
l = m + 1;
} else {
h = m;
}
}
return h - 1;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy