All Downloads are FREE. Search and download functionalities are using the official Maven repository.

g1901_2000.s1906_minimum_absolute_difference_queries.Solution Maven / Gradle / Ivy

There is a newer version: 1.38
Show newest version
package g1901_2000.s1906_minimum_absolute_difference_queries;

// #Medium #Array #Hash_Table #2022_05_11_Time_176_ms_(71.61%)_Space_82.6_MB_(95.48%)

import java.util.Arrays;
import java.util.BitSet;

/**
 * 1906 - Minimum Absolute Difference Queries\.
 *
 * Medium
 *
 * The **minimum absolute difference** of an array `a` is defined as the **minimum value** of `|a[i] - a[j]|`, where `0 <= i < j < a.length` and `a[i] != a[j]`. If all elements of `a` are the **same** , the minimum absolute difference is `-1`.
 *
 * *   For example, the minimum absolute difference of the array `[5,2,3,7,2]` is `|2 - 3| = 1`. Note that it is not `0` because `a[i]` and `a[j]` must be different.
 *
 * You are given an integer array `nums` and the array `queries` where queries[i] = [li, ri]. For each query `i`, compute the **minimum absolute difference** of the **subarray** nums[li...ri] containing the elements of `nums` between the **0-based** indices li and ri ( **inclusive** ).
 *
 * Return _an **array**_ `ans` _where_ `ans[i]` _is the answer to the_ ith _query_.
 *
 * A **subarray** is a contiguous sequence of elements in an array.
 *
 * The value of `|x|` is defined as:
 *
 * *   `x` if `x >= 0`.
 * *   `-x` if `x < 0`.
 *
 * **Example 1:**
 *
 * **Input:** nums = [1,3,4,8], queries = \[\[0,1],[1,2],[2,3],[0,3]]
 *
 * **Output:** [2,1,4,1]
 *
 * **Explanation:** The queries are processed as follows: 
 *
 * - queries[0] = [0,1]: The subarray is [1,3] and the minimum absolute difference is |1-3| = 2. 
 *
 * - queries[1] = [1,2]: The subarray is [3,4] and the minimum absolute difference is |3-4| = 1. 
 *
 * - queries[2] = [2,3]: The subarray is [4,8] and the minimum absolute difference is |4-8| = 4. 
 *
 * - queries[3] = [0,3]: The subarray is [1,3,4,8] and the minimum absolute difference is |3-4| = 1.
 *
 * **Example 2:**
 *
 * **Input:** nums = [4,5,2,2,7,10], queries = \[\[2,3],[0,2],[0,5],[3,5]]
 *
 * **Output:** [-1,1,1,3]
 *
 * **Explanation:** The queries are processed as follows: 
 *
 * - queries[0] = [2,3]: The subarray is [2,2] and the minimum absolute difference is -1 because all the elements are the same. 
 *
 * - queries[1] = [0,2]: The subarray is [4,5,2] and the minimum absolute difference is |4-5| = 1. 
 *
 * - queries[2] = [0,5]: The subarray is [4,5,2,2,7,10] and the minimum absolute difference is |4-5| = 1. 
 *
 * - queries[3] = [3,5]: The subarray is [2,7,10] and the minimum absolute difference is |7-10| = 3.
 *
 * **Constraints:**
 *
 * *   2 <= nums.length <= 105
 * *   `1 <= nums[i] <= 100`
 * *   1 <= queries.length <= 2 * 104
 * *   0 <= li < ri < nums.length
**/
public class Solution {
    private static class SegmentTree {
        static class Node {
            BitSet bits;
            int minDiff;
        }

        int len;
        int[] nums;
        Node[] tree;
        static final int INF = 200;

        SegmentTree(int[] nums, int len) {
            this.nums = Arrays.copyOf(nums, len);
            this.len = len;
            tree = new Node[4 * len];
            buildTree(0, len - 1, 0);
        }

        private void buildTree(int i, int j, int ti) {
            if (i <= j) {
                if (i == j) {
                    Node node = new Node();
                    node.bits = new BitSet(101);
                    node.bits.set(nums[i]);
                    node.minDiff = INF;
                    tree[ti] = node;
                } else {
                    int mid = i + (j - i) / 2;
                    buildTree(i, mid, 2 * ti + 1);
                    buildTree(mid + 1, j, 2 * ti + 2);
                    tree[ti] = combineNodes(tree[2 * ti + 1], tree[2 * ti + 2]);
                }
            }
        }

        private Node combineNodes(Node n1, Node n2) {
            Node node = new Node();
            if (n1.minDiff == 1 || n2.minDiff == 1) {
                node.minDiff = 1;
            } else {
                node.bits = new BitSet(101);
                node.bits.or(n1.bits);
                node.bits.or(n2.bits);
                node.minDiff = findMinDiff(node.bits);
            }
            return node;
        }

        private int findMinDiff(BitSet bits) {
            // minimum value of number is 1.
            int first = bits.nextSetBit(1);
            int minDiff = INF;
            while (first != -1) {
                int next = bits.nextSetBit(first + 1);
                if (next != -1) {
                    minDiff = Math.min(minDiff, next - first);
                    if (minDiff == 1) {
                        break;
                    }
                }
                first = next;
            }
            return minDiff;
        }

        private int findMinAbsDiff(int start, int end, int i, int j, int ti) {
            Node node = findMinAbsDiff2(start, end, i, j, ti);
            return node.minDiff == INF ? -1 : node.minDiff;
        }

        private Node findMinAbsDiff2(int start, int end, int i, int j, int ti) {
            if (i == start && j == end) {
                return tree[ti];
            }
            int mid = i + (j - i) / 2;
            if (end <= mid) {
                return findMinAbsDiff2(start, end, i, mid, 2 * ti + 1);
            } else if (start >= mid + 1) {
                return findMinAbsDiff2(start, end, mid + 1, j, 2 * ti + 2);
            } else {
                Node left = findMinAbsDiff2(start, mid, i, mid, 2 * ti + 1);
                Node right = findMinAbsDiff2(mid + 1, end, mid + 1, j, 2 * ti + 2);
                return combineNodes(left, right);
            }
        }
    }

    public int[] minDifference(int[] nums, int[][] queries) {
        int len = nums.length;
        int qlen = queries.length;
        SegmentTree st = new SegmentTree(nums, len);
        int[] answer = new int[qlen];
        for (int i = 0; i < qlen; ++i) {
            answer[i] = st.findMinAbsDiff(queries[i][0], queries[i][1], 0, len - 1, 0);
        }
        return answer;
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy