g1901_2000.s1906_minimum_absolute_difference_queries.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g1901_2000.s1906_minimum_absolute_difference_queries;
// #Medium #Array #Hash_Table #2022_05_11_Time_176_ms_(71.61%)_Space_82.6_MB_(95.48%)
import java.util.Arrays;
import java.util.BitSet;
/**
* 1906 - Minimum Absolute Difference Queries\.
*
* Medium
*
* The **minimum absolute difference** of an array `a` is defined as the **minimum value** of `|a[i] - a[j]|`, where `0 <= i < j < a.length` and `a[i] != a[j]`. If all elements of `a` are the **same** , the minimum absolute difference is `-1`.
*
* * For example, the minimum absolute difference of the array `[5,2,3,7,2]` is `|2 - 3| = 1`. Note that it is not `0` because `a[i]` and `a[j]` must be different.
*
* You are given an integer array `nums` and the array `queries` where queries[i] = [li, ri]
. For each query `i`, compute the **minimum absolute difference** of the **subarray** nums[li...ri]
containing the elements of `nums` between the **0-based** indices li
and ri
( **inclusive** ).
*
* Return _an **array**_ `ans` _where_ `ans[i]` _is the answer to the_ ith
_query_.
*
* A **subarray** is a contiguous sequence of elements in an array.
*
* The value of `|x|` is defined as:
*
* * `x` if `x >= 0`.
* * `-x` if `x < 0`.
*
* **Example 1:**
*
* **Input:** nums = [1,3,4,8], queries = \[\[0,1],[1,2],[2,3],[0,3]]
*
* **Output:** [2,1,4,1]
*
* **Explanation:** The queries are processed as follows:
*
* - queries[0] = [0,1]: The subarray is [1,3] and the minimum absolute difference is |1-3| = 2.
*
* - queries[1] = [1,2]: The subarray is [3,4] and the minimum absolute difference is |3-4| = 1.
*
* - queries[2] = [2,3]: The subarray is [4,8] and the minimum absolute difference is |4-8| = 4.
*
* - queries[3] = [0,3]: The subarray is [1,3,4,8] and the minimum absolute difference is |3-4| = 1.
*
* **Example 2:**
*
* **Input:** nums = [4,5,2,2,7,10], queries = \[\[2,3],[0,2],[0,5],[3,5]]
*
* **Output:** [-1,1,1,3]
*
* **Explanation:** The queries are processed as follows:
*
* - queries[0] = [2,3]: The subarray is [2,2] and the minimum absolute difference is -1 because all the elements are the same.
*
* - queries[1] = [0,2]: The subarray is [4,5,2] and the minimum absolute difference is |4-5| = 1.
*
* - queries[2] = [0,5]: The subarray is [4,5,2,2,7,10] and the minimum absolute difference is |4-5| = 1.
*
* - queries[3] = [3,5]: The subarray is [2,7,10] and the minimum absolute difference is |7-10| = 3.
*
* **Constraints:**
*
* * 2 <= nums.length <= 105
* * `1 <= nums[i] <= 100`
* * 1 <= queries.length <= 2 * 104
* * 0 <= li < ri < nums.length
**/
public class Solution {
private static class SegmentTree {
static class Node {
BitSet bits;
int minDiff;
}
int len;
int[] nums;
Node[] tree;
static final int INF = 200;
SegmentTree(int[] nums, int len) {
this.nums = Arrays.copyOf(nums, len);
this.len = len;
tree = new Node[4 * len];
buildTree(0, len - 1, 0);
}
private void buildTree(int i, int j, int ti) {
if (i <= j) {
if (i == j) {
Node node = new Node();
node.bits = new BitSet(101);
node.bits.set(nums[i]);
node.minDiff = INF;
tree[ti] = node;
} else {
int mid = i + (j - i) / 2;
buildTree(i, mid, 2 * ti + 1);
buildTree(mid + 1, j, 2 * ti + 2);
tree[ti] = combineNodes(tree[2 * ti + 1], tree[2 * ti + 2]);
}
}
}
private Node combineNodes(Node n1, Node n2) {
Node node = new Node();
if (n1.minDiff == 1 || n2.minDiff == 1) {
node.minDiff = 1;
} else {
node.bits = new BitSet(101);
node.bits.or(n1.bits);
node.bits.or(n2.bits);
node.minDiff = findMinDiff(node.bits);
}
return node;
}
private int findMinDiff(BitSet bits) {
// minimum value of number is 1.
int first = bits.nextSetBit(1);
int minDiff = INF;
while (first != -1) {
int next = bits.nextSetBit(first + 1);
if (next != -1) {
minDiff = Math.min(minDiff, next - first);
if (minDiff == 1) {
break;
}
}
first = next;
}
return minDiff;
}
private int findMinAbsDiff(int start, int end, int i, int j, int ti) {
Node node = findMinAbsDiff2(start, end, i, j, ti);
return node.minDiff == INF ? -1 : node.minDiff;
}
private Node findMinAbsDiff2(int start, int end, int i, int j, int ti) {
if (i == start && j == end) {
return tree[ti];
}
int mid = i + (j - i) / 2;
if (end <= mid) {
return findMinAbsDiff2(start, end, i, mid, 2 * ti + 1);
} else if (start >= mid + 1) {
return findMinAbsDiff2(start, end, mid + 1, j, 2 * ti + 2);
} else {
Node left = findMinAbsDiff2(start, mid, i, mid, 2 * ti + 1);
Node right = findMinAbsDiff2(mid + 1, end, mid + 1, j, 2 * ti + 2);
return combineNodes(left, right);
}
}
}
public int[] minDifference(int[] nums, int[][] queries) {
int len = nums.length;
int qlen = queries.length;
SegmentTree st = new SegmentTree(nums, len);
int[] answer = new int[qlen];
for (int i = 0; i < qlen; ++i) {
answer[i] = st.findMinAbsDiff(queries[i][0], queries[i][1], 0, len - 1, 0);
}
return answer;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy