g1901_2000.s1975_maximum_matrix_sum.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g1901_2000.s1975_maximum_matrix_sum;
// #Medium #Array #Greedy #Matrix #2022_05_21_Time_4_ms_(100.00%)_Space_79.8_MB_(36.28%)
/**
* 1975 - Maximum Matrix Sum\.
*
* Medium
*
* You are given an `n x n` integer `matrix`. You can do the following operation **any** number of times:
*
* * Choose any two **adjacent** elements of `matrix` and **multiply** each of them by `-1`.
*
* Two elements are considered **adjacent** if and only if they share a **border**.
*
* Your goal is to **maximize** the summation of the matrix's elements. Return _the **maximum** sum of the matrix's elements using the operation mentioned above._
*
* **Example 1:**
*
* ![](https://assets.leetcode.com/uploads/2021/07/16/pc79-q2ex1.png)
*
* **Input:** matrix = \[\[1,-1],[-1,1]]
*
* **Output:** 4
*
* **Explanation:** We can follow the following steps to reach sum equals 4:
*
* - Multiply the 2 elements in the first row by -1.
*
* - Multiply the 2 elements in the first column by -1.
*
* **Example 2:**
*
* ![](https://assets.leetcode.com/uploads/2021/07/16/pc79-q2ex2.png)
*
* **Input:** matrix = \[\[1,2,3],[-1,-2,-3],[1,2,3]]
*
* **Output:** 16
*
* **Explanation:** We can follow the following step to reach sum equals 16: - Multiply the 2 last elements in the second row by -1.
*
* **Constraints:**
*
* * `n == matrix.length == matrix[i].length`
* * `2 <= n <= 250`
* * -105 <= matrix[i][j] <= 105
**/
public class Solution {
public long maxMatrixSum(int[][] matrix) {
int numNegatives = 0;
long totalSum = 0;
int minNeg = Integer.MIN_VALUE;
int minPos = Integer.MAX_VALUE;
for (int[] ints : matrix) {
for (int e = 0; e < matrix[0].length; e++) {
int value = ints[e];
if (value < 0) {
numNegatives++;
totalSum = totalSum - value;
minNeg = Math.max(value, minNeg);
} else {
totalSum = totalSum + value;
minPos = Math.min(value, minPos);
}
}
}
int min = Math.min(minPos, -minNeg);
return totalSum - numNegatives % 2 * (min + min);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy