g1901_2000.s1993_operations_on_tree.LockingTree Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g1901_2000.s1993_operations_on_tree;
// #Medium #Hash_Table #Depth_First_Search #Breadth_First_Search #Tree #Design
// #2022_05_19_Time_394_ms_(23.03%)_Space_167.4_MB_(5.26%)
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
/**
* 1993 - Operations on Tree\.
*
* Medium
*
* You are given a tree with `n` nodes numbered from `0` to `n - 1` in the form of a parent array `parent` where `parent[i]` is the parent of the ith
node. The root of the tree is node `0`, so `parent[0] = -1` since it has no parent. You want to design a data structure that allows users to lock, unlock, and upgrade nodes in the tree.
*
* The data structure should support the following functions:
*
* * **Lock: Locks** the given node for the given user and prevents other users from locking the same node. You may only lock a node using this function if the node is unlocked.
* * **Unlock: Unlocks** the given node for the given user. You may only unlock a node using this function if it is currently locked by the same user.
* * **Upgrade: Locks** the given node for the given user and **unlocks** all of its descendants **regardless** of who locked it. You may only upgrade a node if **all** 3 conditions are true:
* * The node is unlocked,
* * It has at least one locked descendant (by **any** user), and
* * It does not have any locked ancestors.
*
* Implement the `LockingTree` class:
*
* * `LockingTree(int[] parent)` initializes the data structure with the parent array.
* * `lock(int num, int user)` returns `true` if it is possible for the user with id `user` to lock the node `num`, or `false` otherwise. If it is possible, the node `num` will become **locked** by the user with id `user`.
* * `unlock(int num, int user)` returns `true` if it is possible for the user with id `user` to unlock the node `num`, or `false` otherwise. If it is possible, the node `num` will become **unlocked**.
* * `upgrade(int num, int user)` returns `true` if it is possible for the user with id `user` to upgrade the node `num`, or `false` otherwise. If it is possible, the node `num` will be **upgraded**.
*
* **Example 1:**
*
* ![](https://assets.leetcode.com/uploads/2021/07/29/untitled.png)
*
* **Input**
*
* ["LockingTree", "lock", "unlock", "unlock", "lock", "upgrade", "lock"]
*
* [[[-1, 0, 0, 1, 1, 2, 2]], [2, 2], [2, 3], [2, 2], [4, 5], [0, 1], [0, 1]]
*
* **Output:** [null, true, false, true, true, true, false]
*
* **Explanation:**
*
* LockingTree lockingTree = new LockingTree([-1, 0, 0, 1, 1, 2, 2]);
* lockingTree.lock(2, 2); // return true because node 2 is unlocked.
* // Node 2 will now be locked by user 2.
* lockingTree.unlock(2, 3); // return false because user 3 cannot unlock a node locked by user 2.
* lockingTree.unlock(2, 2); // return true because node 2 was previously locked by user 2.
* // Node 2 will now be unlocked.
* lockingTree.lock(4, 5); // return true because node 4 is unlocked.
* // Node 4 will now be locked by user 5.
* lockingTree.upgrade(0, 1); // return true because node 0 is unlocked and has at least one locked descendant (node 4).
* // Node 0 will now be locked by user 1 and node 4 will now be unlocked.
* lockingTree.lock(0, 1); // return false because node 0 is already locked.
*
* **Constraints:**
*
* * `n == parent.length`
* * `2 <= n <= 2000`
* * `0 <= parent[i] <= n - 1` for `i != 0`
* * `parent[0] == -1`
* * `0 <= num <= n - 1`
* * 1 <= user <= 104
* * `parent` represents a valid tree.
* * At most `2000` calls **in total** will be made to `lock`, `unlock`, and `upgrade`.
**/
public class LockingTree {
private int[][] a;
private HashMap> map = new HashMap<>();
public LockingTree(int[] parent) {
int l = parent.length;
a = new int[l][2];
for (int i = 0; i < l; i++) {
a[i][0] = parent[i];
a[i][1] = -1;
map.putIfAbsent(parent[i], new ArrayList<>());
List p = map.get(parent[i]);
p.add(i);
map.put(parent[i], p);
}
}
public boolean lock(int num, int user) {
int userId = a[num][1];
if (userId == -1) {
a[num][1] = user;
return true;
}
return false;
}
public boolean unlock(int num, int user) {
int y = a[num][1];
if (y == user) {
a[num][1] = -1;
return true;
}
return false;
}
public boolean upgrade(int num, int user) {
int par = num;
while (par >= 0) {
int lop = a[par][1];
if (lop != -1) {
return false;
}
par = a[par][0];
}
int f = 0;
LinkedList que = new LinkedList<>();
int[] v = new int[a.length];
que.add(num);
v[num] = 1;
while (!que.isEmpty()) {
int t = que.get(0);
que.remove(0);
List p = map.getOrDefault(t, new ArrayList<>());
for (int e : p) {
if (a[e][1] != -1) {
f = 1;
a[e][1] = -1;
}
if (v[e] == 0) {
que.add(e);
v[e] = 1;
}
}
}
if (f == 1) {
a[num][1] = user;
return true;
}
return false;
}
}
/*
* Your LockingTree object will be instantiated and called as such:
* LockingTree obj = new LockingTree(parent);
* boolean param_1 = obj.lock(num,user);
* boolean param_2 = obj.unlock(num,user);
* boolean param_3 = obj.upgrade(num,user);
*/
© 2015 - 2025 Weber Informatics LLC | Privacy Policy