g2001_2100.s2048_next_greater_numerically_balanced_number.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g2001_2100.s2048_next_greater_numerically_balanced_number;
// #Medium #Math #Backtracking #Enumeration #2022_05_26_Time_2_ms_(95.19%)_Space_41.8_MB_(72.12%)
/**
* 2048 - Next Greater Numerically Balanced Number\.
*
* Medium
*
* An integer `x` is **numerically balanced** if for every digit `d` in the number `x`, there are **exactly** `d` occurrences of that digit in `x`.
*
* Given an integer `n`, return _the **smallest numerically balanced** number **strictly greater** than_ `n`_._
*
* **Example 1:**
*
* **Input:** n = 1
*
* **Output:** 22
*
* **Explanation:**
*
* 22 is numerically balanced since:
*
* - The digit 2 occurs 2 times.
*
* It is also the smallest numerically balanced number strictly greater than 1.
*
* **Example 2:**
*
* **Input:** n = 1000
*
* **Output:** 1333
*
* **Explanation:**
*
* 1333 is numerically balanced since:
*
* - The digit 1 occurs 1 time.
*
* - The digit 3 occurs 3 times.
*
* It is also the smallest numerically balanced number strictly greater than 1000. Note that 1022 cannot be the answer because 0 appeared more than 0 times.
*
* **Example 3:**
*
* **Input:** n = 3000
*
* **Output:** 3133
*
* **Explanation:**
*
* 3133 is numerically balanced since:
*
* - The digit 1 occurs 1 time.
*
* - The digit 3 occurs 3 times.
*
* It is also the smallest numerically balanced number strictly greater than 3000.
*
* **Constraints:**
*
* * 0 <= n <= 106
**/
public class Solution {
public int nextBeautifulNumber(int n) {
int[] arr = new int[] {0, 1, 2, 3, 4, 5, 6};
boolean[] select = new boolean[7];
int d = n == 0 ? 1 : (int) Math.log10(n) + 1;
return solve(1, n, d, 0, select, arr);
}
private int solve(int i, int n, int d, int sz, boolean[] select, int[] arr) {
if (sz > d + 1) {
return Integer.MAX_VALUE;
}
if (i == select.length) {
return sz >= d ? make(0, n, sz, select, arr) : Integer.MAX_VALUE;
}
int ans = solve(i + 1, n, d, sz, select, arr);
select[i] = true;
ans = Math.min(ans, solve(i + 1, n, d, sz + i, select, arr));
select[i] = false;
return ans;
}
private int make(int cur, int n, int end, boolean[] select, int[] arr) {
if (end == 0) {
return cur > n ? cur : Integer.MAX_VALUE;
}
int ans = Integer.MAX_VALUE;
for (int j = 1; j < arr.length; j++) {
if (!select[j] || arr[j] == 0) {
continue;
}
--arr[j];
ans = Math.min(make(10 * cur + j, n, end - 1, select, arr), ans);
++arr[j];
}
return ans;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy