g2101_2200.s2122_recover_the_original_array.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g2101_2200.s2122_recover_the_original_array;
// #Hard #Array #Hash_Table #Sorting #Enumeration
// #2022_06_02_Time_19_ms_(89.04%)_Space_54.9_MB_(39.73%)
import java.util.ArrayList;
import java.util.Arrays;
/**
* 2122 - Recover the Original Array\.
*
* Hard
*
* Alice had a **0-indexed** array `arr` consisting of `n` **positive** integers. She chose an arbitrary **positive integer** `k` and created two new **0-indexed** integer arrays `lower` and `higher` in the following manner:
*
* 1. `lower[i] = arr[i] - k`, for every index `i` where `0 <= i < n`
* 2. `higher[i] = arr[i] + k`, for every index `i` where `0 <= i < n`
*
* Unfortunately, Alice lost all three arrays. However, she remembers the integers that were present in the arrays `lower` and `higher`, but not the array each integer belonged to. Help Alice and recover the original array.
*
* Given an array `nums` consisting of `2n` integers, where **exactly** `n` of the integers were present in `lower` and the remaining in `higher`, return _the **original** array_ `arr`. In case the answer is not unique, return _**any** valid array_.
*
* **Note:** The test cases are generated such that there exists **at least one** valid array `arr`.
*
* **Example 1:**
*
* **Input:** nums = [2,10,6,4,8,12]
*
* **Output:** [3,7,11]
*
* **Explanation:**
*
* If arr = [3,7,11] and k = 1, we get lower = [2,6,10] and higher = [4,8,12].
*
* Combining lower and higher gives us [2,6,10,4,8,12], which is a permutation of nums.
*
* Another valid possibility is that arr = [5,7,9] and k = 3. In that case, lower = [2,4,6] and higher = [8,10,12].
*
* **Example 2:**
*
* **Input:** nums = [1,1,3,3]
*
* **Output:** [2,2]
*
* **Explanation:**
*
* If arr = [2,2] and k = 1, we get lower = [1,1] and higher = [3,3].
*
* Combining lower and higher gives us [1,1,3,3], which is equal to nums.
*
* Note that arr cannot be [1,3] because in that case, the only possible way to obtain [1,1,3,3] is with k = 0.
*
* This is invalid since k must be positive.
*
* **Example 3:**
*
* **Input:** nums = [5,435]
*
* **Output:** [220]
*
* **Explanation:** The only possible combination is arr = [220] and k = 215. Using them, we get lower = [5] and higher = [435].
*
* **Constraints:**
*
* * `2 * n == nums.length`
* * `1 <= n <= 1000`
* * 1 <= nums[i] <= 109
* * The test cases are generated such that there exists **at least one** valid array `arr`.
**/
public class Solution {
private int[] res;
public int[] recoverArray(int[] nums) {
int n = nums.length;
Arrays.sort(nums);
ArrayList diffs = new ArrayList<>();
int smallest = nums[0];
for (int i = 1; i < n; i++) {
int k = (nums[i] - smallest) / 2;
if ((nums[i] - smallest) % 2 == 0 && k != 0) {
diffs.add(k);
}
}
for (int k : diffs) {
if (check(n, k, nums)) {
break;
}
}
return res;
}
private boolean check(int n, int k, int[] nums) {
res = new int[n / 2];
boolean[] visited = new boolean[n];
int lower = 0;
int higher = 1;
int count = 0;
while (lower < n) {
if (visited[lower]) {
lower++;
continue;
}
int lowerVal = nums[lower];
int higherVal = lowerVal + (2 * k);
while (higher < n) {
if (nums[higher] == higherVal && !visited[higher]) {
break;
}
higher++;
}
if (higher == n) {
return false;
}
visited[lower] = true;
visited[higher] = true;
res[count] = lowerVal + k;
count++;
if (count == n / 2) {
return true;
}
lower++;
higher++;
}
return false;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy