All Downloads are FREE. Search and download functionalities are using the official Maven repository.

g2101_2200.s2122_recover_the_original_array.Solution Maven / Gradle / Ivy

There is a newer version: 1.38
Show newest version
package g2101_2200.s2122_recover_the_original_array;

// #Hard #Array #Hash_Table #Sorting #Enumeration
// #2022_06_02_Time_19_ms_(89.04%)_Space_54.9_MB_(39.73%)

import java.util.ArrayList;
import java.util.Arrays;

/**
 * 2122 - Recover the Original Array\.
 *
 * Hard
 *
 * Alice had a **0-indexed** array `arr` consisting of `n` **positive** integers. She chose an arbitrary **positive integer** `k` and created two new **0-indexed** integer arrays `lower` and `higher` in the following manner:
 *
 * 1.  `lower[i] = arr[i] - k`, for every index `i` where `0 <= i < n`
 * 2.  `higher[i] = arr[i] + k`, for every index `i` where `0 <= i < n`
 *
 * Unfortunately, Alice lost all three arrays. However, she remembers the integers that were present in the arrays `lower` and `higher`, but not the array each integer belonged to. Help Alice and recover the original array.
 *
 * Given an array `nums` consisting of `2n` integers, where **exactly** `n` of the integers were present in `lower` and the remaining in `higher`, return _the **original** array_ `arr`. In case the answer is not unique, return _**any** valid array_.
 *
 * **Note:** The test cases are generated such that there exists **at least one** valid array `arr`.
 *
 * **Example 1:**
 *
 * **Input:** nums = [2,10,6,4,8,12]
 *
 * **Output:** [3,7,11]
 *
 * **Explanation:** 
 *
 * If arr = [3,7,11] and k = 1, we get lower = [2,6,10] and higher = [4,8,12]. 
 *
 * Combining lower and higher gives us [2,6,10,4,8,12], which is a permutation of nums. 
 *
 * Another valid possibility is that arr = [5,7,9] and k = 3. In that case, lower = [2,4,6] and higher = [8,10,12].
 *
 * **Example 2:**
 *
 * **Input:** nums = [1,1,3,3]
 *
 * **Output:** [2,2]
 *
 * **Explanation:** 
 *
 * If arr = [2,2] and k = 1, we get lower = [1,1] and higher = [3,3]. 
 *
 * Combining lower and higher gives us [1,1,3,3], which is equal to nums. 
 *
 * Note that arr cannot be [1,3] because in that case, the only possible way to obtain [1,1,3,3] is with k = 0. 
 *
 * This is invalid since k must be positive.
 *
 * **Example 3:**
 *
 * **Input:** nums = [5,435]
 *
 * **Output:** [220]
 *
 * **Explanation:** The only possible combination is arr = [220] and k = 215. Using them, we get lower = [5] and higher = [435].
 *
 * **Constraints:**
 *
 * *   `2 * n == nums.length`
 * *   `1 <= n <= 1000`
 * *   1 <= nums[i] <= 109
 * *   The test cases are generated such that there exists **at least one** valid array `arr`.
**/
public class Solution {
    private int[] res;

    public int[] recoverArray(int[] nums) {
        int n = nums.length;
        Arrays.sort(nums);
        ArrayList diffs = new ArrayList<>();
        int smallest = nums[0];
        for (int i = 1; i < n; i++) {
            int k = (nums[i] - smallest) / 2;
            if ((nums[i] - smallest) % 2 == 0 && k != 0) {
                diffs.add(k);
            }
        }
        for (int k : diffs) {
            if (check(n, k, nums)) {
                break;
            }
        }
        return res;
    }

    private boolean check(int n, int k, int[] nums) {
        res = new int[n / 2];
        boolean[] visited = new boolean[n];
        int lower = 0;
        int higher = 1;
        int count = 0;
        while (lower < n) {
            if (visited[lower]) {
                lower++;
                continue;
            }
            int lowerVal = nums[lower];
            int higherVal = lowerVal + (2 * k);
            while (higher < n) {
                if (nums[higher] == higherVal && !visited[higher]) {
                    break;
                }
                higher++;
            }
            if (higher == n) {
                return false;
            }
            visited[lower] = true;
            visited[higher] = true;
            res[count] = lowerVal + k;
            count++;
            if (count == n / 2) {
                return true;
            }
            lower++;
            higher++;
        }
        return false;
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy