g2301_2400.s2317_maximum_xor_after_operations.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g2301_2400.s2317_maximum_xor_after_operations;
// #Medium #Array #Math #Bit_Manipulation #2022_06_26_Time_1_ms_(100.00%)_Space_53.3_MB_(100.00%)
/**
* 2317 - Maximum XOR After Operations\.
*
* Medium
*
* You are given a **0-indexed** integer array `nums`. In one operation, select **any** non-negative integer `x` and an index `i`, then **update** `nums[i]` to be equal to `nums[i] AND (nums[i] XOR x)`.
*
* Note that `AND` is the bitwise AND operation and `XOR` is the bitwise XOR operation.
*
* Return _the **maximum** possible bitwise XOR of all elements of_ `nums` _after applying the operation **any number** of times_.
*
* **Example 1:**
*
* **Input:** nums = [3,2,4,6]
*
* **Output:** 7
*
* **Explanation:** Apply the operation with x = 4 and i = 3, num[3] = 6 AND (6 XOR 4) = 6 AND 2 = 2.
*
* Now, nums = [3, 2, 4, 2] and the bitwise XOR of all the elements = 3 XOR 2 XOR 4 XOR 2 = 7.
*
* It can be shown that 7 is the maximum possible bitwise XOR.
*
* Note that other operations may be used to achieve a bitwise XOR of 7.
*
* **Example 2:**
*
* **Input:** nums = [1,2,3,9,2]
*
* **Output:** 11
*
* **Explanation:** Apply the operation zero times.
*
* The bitwise XOR of all the elements = 1 XOR 2 XOR 3 XOR 9 XOR 2 = 11.
*
* It can be shown that 11 is the maximum possible bitwise XOR.
*
* **Constraints:**
*
* * 1 <= nums.length <= 105
* * 0 <= nums[i] <= 108
**/
public class Solution {
public int maximumXOR(int[] nums) {
int max = 0;
for (int n : nums) {
max |= n;
}
return max;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy