All Downloads are FREE. Search and download functionalities are using the official Maven repository.

g2401_2500.s2426_number_of_pairs_satisfying_inequality.Solution Maven / Gradle / Ivy

There is a newer version: 1.38
Show newest version
package g2401_2500.s2426_number_of_pairs_satisfying_inequality;

// #Hard #Array #Binary_Search #Ordered_Set #Divide_and_Conquer #Segment_Tree #Binary_Indexed_Tree
// #Merge_Sort #2022_11_19_Time_12_ms_(99.69%)_Space_60.6_MB_(86.02%)

/**
 * 2426 - Number of Pairs Satisfying Inequality\.
 *
 * Hard
 *
 * You are given two **0-indexed** integer arrays `nums1` and `nums2`, each of size `n`, and an integer `diff`. Find the number of **pairs** `(i, j)` such that:
 *
 * *   `0 <= i < j <= n - 1` **and**
 * *   `nums1[i] - nums1[j] <= nums2[i] - nums2[j] + diff`.
 *
 * Return _the **number of pairs** that satisfy the conditions._
 *
 * **Example 1:**
 *
 * **Input:** nums1 = [3,2,5], nums2 = [2,2,1], diff = 1
 *
 * **Output:** 3
 *
 * **Explanation:**
 *
 * There are 3 pairs that satisfy the conditions:
 *
 * 1. i = 0, j = 1: 3 - 2 <= 2 - 2 + 1. Since i < j and 1 <= 1, this pair satisfies the conditions.
 *
 * 2. i = 0, j = 2: 3 - 5 <= 2 - 1 + 1. Since i < j and -2 <= 2, this pair satisfies the conditions.
 *
 * 3. i = 1, j = 2: 2 - 5 <= 2 - 1 + 1. Since i < j and -3 <= 2, this pair satisfies the conditions.
 *
 * Therefore, we return 3. 
 *
 * **Example 2:**
 *
 * **Input:** nums1 = [3,-1], nums2 = [-2,2], diff = -1
 *
 * **Output:** 0
 *
 * **Explanation:**
 *
 * Since there does not exist any pair that satisfies the conditions, we return 0. 
 *
 * **Constraints:**
 *
 * *   `n == nums1.length == nums2.length`
 * *   2 <= n <= 105
 * *   -104 <= nums1[i], nums2[i] <= 104
 * *   -104 <= diff <= 104
**/
public class Solution {
    private long[] cnt;

    private long find(int x, int n) {
        long res = 0;
        x = Math.min(x, n);
        while (x > 0) {
            res += cnt[x];
            x -= (x & (-x));
        }
        return res;
    }

    private void update(int x, int n) {
        while (x <= n) {
            cnt[x] += 1;
            x += (x & (-x));
        }
    }

    public long numberOfPairs(int[] nums1, int[] nums2, int diff) {
        int n = nums1.length;
        int[] nums = new int[n];
        int min = Integer.MAX_VALUE;
        int max = Integer.MIN_VALUE;
        for (int i = 0; i < n; i++) {
            nums[i] = nums1[i] - nums2[i];
            min = Math.min(min, nums[i]);
            max = Math.max(max, nums[i]);
        }
        max = max - min + 2;
        long ans = 0;
        cnt = new long[50000];
        for (int i = 0; i < n; i++) {
            nums[i] = nums[i] - min + 1;
            ans += find(nums[i] + diff, max);
            update(nums[i], max);
        }
        return ans;
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy