g2601_2700.s2615_sum_of_distances.Solution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
package g2601_2700.s2615_sum_of_distances;
// #Medium #Array #Hash_Table #Prefix_Sum #2023_08_30_Time_13_ms_(100.00%)_Space_70.4_MB_(43.45%)
import java.util.HashMap;
/**
* 2615 - Sum of Distances\.
*
* Medium
*
* You are given a **0-indexed** integer array `nums`. There exists an array `arr` of length `nums.length`, where `arr[i]` is the sum of `|i - j|` over all `j` such that `nums[j] == nums[i]` and `j != i`. If there is no such `j`, set `arr[i]` to be `0`.
*
* Return _the array_ `arr`_._
*
* **Example 1:**
*
* **Input:** nums = [1,3,1,1,2]
*
* **Output:** [5,0,3,4,0]
*
* **Explanation:**
*
* When i = 0, nums[0] == nums[2] and nums[0] == nums[3]. Therefore, arr[0] = |0 - 2| + |0 - 3| = 5.
*
* When i = 1, arr[1] = 0 because there is no other index with value 3.
*
* When i = 2, nums[2] == nums[0] and nums[2] == nums[3]. Therefore, arr[2] = |2 - 0| + |2 - 3| = 3.
*
* When i = 3, nums[3] == nums[0] and nums[3] == nums[2]. Therefore, arr[3] = |3 - 0| + |3 - 2| = 4.
*
* When i = 4, arr[4] = 0 because there is no other index with value 2.
*
* **Example 2:**
*
* **Input:** nums = [0,5,3]
*
* **Output:** [0,0,0]
*
* **Explanation:** Since each element in nums is distinct, arr[i] = 0 for all i.
*
* **Constraints:**
*
* * 1 <= nums.length <= 105
* * 0 <= nums[i] <= 109
**/
public class Solution {
public long[] distance(int[] nums) {
HashMap map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
long[] temp = map.computeIfAbsent(nums[i], k -> new long[4]);
temp[0] += i;
temp[2]++;
}
long[] ans = new long[nums.length];
for (int i = 0; i < nums.length; i++) {
long[] temp = map.get(nums[i]);
ans[i] += i * temp[3] - temp[1];
temp[1] += i;
temp[3]++;
ans[i] += temp[0] - temp[1] - i * (temp[2] - temp[3]);
}
return ans;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy