g1601_1700.s1603_design_parking_system.readme.md Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java21 Show documentation
Show all versions of leetcode-in-java21 Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
1603\. Design Parking System
Easy
Design a parking system for a parking lot. The parking lot has three kinds of parking spaces: big, medium, and small, with a fixed number of slots for each size.
Implement the `ParkingSystem` class:
* `ParkingSystem(int big, int medium, int small)` Initializes object of the `ParkingSystem` class. The number of slots for each parking space are given as part of the constructor.
* `bool addCar(int carType)` Checks whether there is a parking space of `carType` for the car that wants to get into the parking lot. `carType` can be of three kinds: big, medium, or small, which are represented by `1`, `2`, and `3` respectively. **A car can only park in a parking space of its** `carType`. If there is no space available, return `false`, else park the car in that size space and return `true`.
**Example 1:**
**Input** ["ParkingSystem", "addCar", "addCar", "addCar", "addCar"] [[1, 1, 0], [1], [2], [3], [1]]
**Output:** [null, true, true, false, false]
**Explanation:**
ParkingSystem parkingSystem = new ParkingSystem(1, 1, 0);
parkingSystem.addCar(1); // return true because there is 1 available slot for a big car
parkingSystem.addCar(2); // return true because there is 1 available slot for a medium car
parkingSystem.addCar(3); // return false because there is no available slot for a small car
parkingSystem.addCar(1); // return false because there is no available slot for a big car. It is already occupied.
**Constraints:**
* `0 <= big, medium, small <= 1000`
* `carType` is `1`, `2`, or `3`
* At most `1000` calls will be made to `addCar`