All Downloads are FREE. Search and download functionalities are using the official Maven repository.

g2601_2700.s2653_sliding_subarray_beauty.readme.md Maven / Gradle / Ivy

There is a newer version: 1.37
Show newest version
2653\. Sliding Subarray Beauty

Medium

Given an integer array `nums` containing `n` integers, find the **beauty** of each subarray of size `k`.

The **beauty** of a subarray is the xth **smallest integer** in the subarray if it is **negative**, or `0` if there are fewer than `x` negative integers.

Return _an integer array containing_ `n - k + 1` _integers, which denote the_ **beauty** _of the subarrays **in order** from the first index in the array._

*   A subarray is a contiguous **non-empty** sequence of elements within an array.


**Example 1:**

**Input:** nums = [1,-1,-3,-2,3], k = 3, x = 2

**Output:** [-1,-2,-2]

**Explanation:** There are 3 subarrays with size k = 3. 

The first subarray is `[1, -1, -3]` and the 2nd smallest negative integer is -1.

The second subarray is `[-1, -3, -2]` and the 2nd smallest negative integer is -2.

The third subarray is `[-3, -2, 3] `and the 2nd smallest negative integer is -2.

**Example 2:**

**Input:** nums = [-1,-2,-3,-4,-5], k = 2, x = 2

**Output:** [-1,-2,-3,-4]

**Explanation:** There are 4 subarrays with size k = 2. 

For `[-1, -2]`, the 2nd smallest negative integer is -1. 

For `[-2, -3]`, the 2nd smallest negative integer is -2. 

For `[-3, -4]`, the 2nd smallest negative integer is -3. 

For `[-4, -5]`, the 2nd smallest negative integer is -4.

**Example 3:**

**Input:** nums = [-3,1,2,-3,0,-3], k = 2, x = 1

**Output:** [-3,0,-3,-3,-3]

**Explanation:** There are 5 subarrays with size k = 2**.** 

For `[-3, 1]`, the 1st smallest negative integer is -3. 

For `[1, 2]`, there is no negative integer so the beauty is 0. 

For `[2, -3]`, the 1st smallest negative integer is -3. 

For `[-3, 0]`, the 1st smallest negative integer is -3. 

For `[0, -3]`, the 1st smallest negative integer is -3.

**Constraints:**

*   `n == nums.length`
*   1 <= n <= 105
*   `1 <= k <= n`
*   `1 <= x <= k`
*   `-50 <= nums[i] <= 50`




© 2015 - 2024 Weber Informatics LLC | Privacy Policy