All Downloads are FREE. Search and download functionalities are using the official Maven repository.

g0001_0100.s0085_maximal_rectangle.Solution.kt Maven / Gradle / Ivy

There is a newer version: 1.30
Show newest version
package g0001_0100.s0085_maximal_rectangle

// #Hard #Array #Dynamic_Programming #Matrix #Stack #Monotonic_Stack
// #2023_07_10_Time_209_ms_(100.00%)_Space_37.9_MB_(100.00%)

class Solution {
    fun maximalRectangle(matrix: Array): Int {
        /*
         * idea: using [LC84 Largest Rectangle in Histogram]. For each row of the matrix, construct
         * the histogram based on the current row and the previous histogram (up to the previous
         * row), then compute the largest rectangle area using LC84.
         */
        val m = matrix.size
        var n = 0
        if (m == 0 || matrix[0].size.also { n = it } == 0) {
            return 0
        }
        var i: Int
        var j: Int
        var res = 0
        val heights = IntArray(n)
        i = 0
        while (i < m) {
            j = 0
            while (j < n) {
                if (matrix[i][j] == '0') {
                    heights[j] = 0
                } else {
                    heights[j] += 1
                }
                j++
            }
            res = Math.max(res, largestRectangleArea(heights))
            i++
        }
        return res
    }

    private fun largestRectangleArea(heights: IntArray): Int {
        /*
         * idea: scan and store if a[i-1]<=a[i] (increasing), then as long as a[i]a[i], which
         * is a[j]*(i-j). And meanwhile, all these bars (a[j]'s) are already done, and thus are
         * throwable (using pop() with a stack).
         *
         * 

We can use an array nLeftGeq[] of size n to simulate a stack. nLeftGeq[i] = the number * of elements to the left of [i] having value greater than or equal to a[i] (including a[i] * itself). It is also the index difference between [i] and the next index on the top of the * stack. */ val n = heights.size if (n == 0) { return 0 } val nLeftGeq = IntArray(n) // the number of elements to the left // of [i] with value >= heights[i] nLeftGeq[0] = 1 // preIdx=the index of stack.peek(), res=max area so far var preIdx = 0 var res = 0 for (i in 1 until n) { nLeftGeq[i] = 1 // notice that preIdx = i - 1 = peek() while (preIdx >= 0 && heights[i] < heights[preIdx]) { res = Math.max(res, heights[preIdx] * (nLeftGeq[preIdx] + i - preIdx - 1)) // pop() nLeftGeq[i] += nLeftGeq[preIdx] // peek() current top preIdx = preIdx - nLeftGeq[preIdx] } if (preIdx >= 0 && heights[i] == heights[preIdx]) { // pop() nLeftGeq[i] += nLeftGeq[preIdx] } // otherwise nothing to do preIdx = i } // compute the rest largest rectangle areas with (indices of) bases // on stack while (preIdx >= 0 && 0 < heights[preIdx]) { res = Math.max(res, heights[preIdx] * (nLeftGeq[preIdx] + n - preIdx - 1)) // peek() current top preIdx = preIdx - nLeftGeq[preIdx] } return res } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy