g0801_0900.s0868_binary_gap.readme.md Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-kotlin Show documentation
Show all versions of leetcode-in-kotlin Show documentation
Kotlin-based LeetCode algorithm problem solutions, regularly updated
868\. Binary Gap
Easy
Given a positive integer `n`, find and return _the **longest distance** between any two **adjacent**_ `1`_'s in the binary representation of_ `n`_. If there are no two adjacent_ `1`_'s, return_ `0`_._
Two `1`'s are **adjacent** if there are only `0`'s separating them (possibly no `0`'s). The **distance** between two `1`'s is the absolute difference between their bit positions. For example, the two `1`'s in `"1001"` have a distance of 3.
**Example 1:**
**Input:** n = 22
**Output:** 2
**Explanation:** 22 in binary is "10110".
The first adjacent pair of 1's is "10110" with a distance of 2.
The second adjacent pair of 1's is "10110" with a distance of 1.
The answer is the largest of these two distances, which is 2.
Note that "10110" is not a valid pair since there is a 1 separating the two 1's underlined.
**Example 2:**
**Input:** n = 8
**Output:** 0
**Explanation:** 8 in binary is "1000". There are not any adjacent pairs of 1's in the binary representation of 8, so we return 0.
**Example 3:**
**Input:** n = 5
**Output:** 2
**Explanation:** 5 in binary is "101".
**Constraints:**
* 1 <= n <= 109