![JAR search and dependency download from the Maven repository](/logo.png)
g2901_3000.s2983_palindrome_rearrangement_queries.Solution.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-kotlin Show documentation
Show all versions of leetcode-in-kotlin Show documentation
Kotlin-based LeetCode algorithm problem solutions, regularly updated
package g2901_3000.s2983_palindrome_rearrangement_queries
// #Hard #String #Hash_Table #Prefix_Sum #2024_01_19_Time_905_ms_(87.50%)_Space_131.9_MB_(37.50%)
class Solution {
private var n = 0
// get associated index in the other half
private fun opp(i: Int): Int {
return n - 1 - i
}
fun canMakePalindromeQueries(s: String, queries: Array): BooleanArray {
val fq = IntArray(26)
val m = queries.size
val ret = BooleanArray(m)
n = s.length
// check that both halves contain the same letters
for (i in 0 until n / 2) {
fq[s[i].code - 'a'.code]++
}
for (i in n / 2 until n) {
fq[s[i].code - 'a'.code]--
}
for (em in fq) {
if (em != 0) {
return ret
}
}
// find the first and the last characters in the first half
// that do not match with their associated character in
// the second half
var problemPoint = -1
var lastProblem = -1
for (i in 0 until n / 2) {
if (s[i] != s[opp(i)]) {
if (problemPoint == -1) {
problemPoint = i
}
lastProblem = i
}
}
// if already a palindrome
if (problemPoint == -1) {
ret.fill(true)
return ret
}
// the idea is that at least one of the intervals in the
// query has to cover the first pair of different characters.
// But depending on how far the other end of that interval
// goes, the requirements for the other interval are lessened
val dpFirst = IntArray(n / 2 + 1)
val dpSecond = IntArray(n + 1)
dpFirst.fill(-1)
dpSecond.fill(-1)
// assuming the first interval covers the first problem,
// and then extends to the right
var rptr = opp(problemPoint)
val mp: MutableMap = HashMap()
for (i in problemPoint until n / 2) {
mp.compute(s[i]) { _: Char?, v: Int? -> if (v == null) 1 else v + 1 }
// the burden for the left end of the second interval does not change;
// it needs to go at least until the last problematic match. But the
// requirements for the right end do. If we can rearrange the characters
// in the left half to match the right end of the right interval, this
// means we do not need the right end of the right interval to go too far
while (mp.containsKey(s[rptr]) ||
(rptr >= n / 2 && s[rptr] == s[opp(rptr)] && mp.isEmpty())
) {
mp.computeIfPresent(s[rptr]) { _: Char?, v: Int -> if (v == 1) null else v - 1 }
rptr--
}
dpFirst[i] = rptr
}
// mirrored discussion assuming it is the right interval that takes
// care of the first problematic pair
var lptr = problemPoint
mp.clear()
for (i in opp(problemPoint) downTo n / 2) {
mp.compute(s[i]) { _: Char?, v: Int? -> if (v == null) 1 else v + 1 }
while (mp.containsKey(s[lptr]) ||
(lptr < n / 2 && s[lptr] == s[opp(lptr)] && mp.isEmpty())
) {
mp.computeIfPresent(s[lptr]) { _: Char?, v: Int -> if (v == 1) null else v - 1 }
lptr++
}
dpSecond[i] = lptr
}
for (i in 0 until m) {
val a = queries[i][0]
val b = queries[i][1]
val c = queries[i][2]
val d = queries[i][3]
// if either interval the problematic interval on its side, it does not matter
// what happens with the other interval
if (a <= problemPoint && b >= lastProblem ||
c <= opp(lastProblem) && d >= opp(problemPoint)
) {
ret[i] = true
continue
}
// if the left interval covers the first problem, we use
// dp to figure out if the right one is large enough
if (a <= problemPoint && b >= problemPoint && d >= dpFirst[b] && c <= opp(lastProblem)) {
ret[i] = true
}
// similarly for the case where the right interval covers
// the first problem
if (d >= opp(problemPoint) && c <= opp(problemPoint) && a <= dpSecond[c] && b >= lastProblem) {
ret[i] = true
}
}
return ret
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy