All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.jessemull.microflexinteger.stat.N Maven / Gradle / Ivy

There is a newer version: 1.0.1
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/* -------------------------------- Package -------------------------------- */

package com.github.jessemull.microflexinteger.stat;

/* ----------------------------- Dependencies ------------------------------ */

import java.util.Collection;
import java.util.Map;
import java.util.TreeMap;

import com.google.common.base.Preconditions;

import com.github.jessemull.microflexinteger.plate.Plate;
import com.github.jessemull.microflexinteger.plate.Well;
import com.github.jessemull.microflexinteger.plate.WellSet;

/**
 * This class returns the number of data points in integer plate stacks, plates, 
 * wells and well sets.
 * 
 * 

* * Statistical operations can be performed on stacks, plates, sets and wells using * standard or aggregated functions. Standard functions calculate the desired * statistic for each well in the stack, plate or set. Aggregated functions aggregate * the values from all the wells in the stack, plate or set and perform the statistical * operation on the aggregated values. Both standard and aggregated functions can * be performed on a subset of data within the stack, plate, set or well. * *

* * The methods within the MicroFlex library are meant to be flexible and the * descriptive statistic object supports operations using a single stack, plate, * set or well as well as collections and arrays of stacks, plates, sets or wells. * * * * * * * * * * * * * * * * * * *
Operation
Beginning
Index
Length of
Subset
Input/Output
* * * * *
Standard
*
* * * * *
+/-
*
* * * * *
+/-
*
* * * * * * * *
Accepts a single well, set, plate or stack as input
Calculates the statistic for each well in a well, set, plate or stack
*
* * * * *
Aggregated
*
* * * * *
+/-
*
* * * * *
+/-
*
* * * * * * * *
Accepts a single well/set/plate/stack or a collection/array of wells/sets/plates/stacks as input
Aggregates the data from all the wells in a well/set/plate/stack and calculates the statistic using the aggregated data
*
* * @author Jesse L. Mull * @update Updated Oct 18, 2016 * @address http://www.jessemull.com * @email [email protected] */ public class N { /* ----------- Number of well data points for all plate wells ----------- */ /** * Returns the number of data points for each plate well. * @param Plate the plate * @return map of wells and results */ public Map plate(Plate plate) { Preconditions.checkNotNull(plate, "The plate value cannot be null."); Map result = new TreeMap(); for (Well well : plate) { Well clone = new Well(well); result.put(clone, well(well)); } return result; } /* --------------------- Aggregated plate statistics ------------------- */ /** * Returns the aggregated number of data points for the plate. * @param Plate the plate * @return the aggregated result */ public int platesAggregated(Plate plate) { Preconditions.checkNotNull(plate, "The plate cannot be null."); int aggregated = 0; for (Well well : plate) { aggregated += well(well); } return aggregated; } /** * Returns the aggregated number of data points for each plate. * @param Collection collection of plates * @return map of plates and aggregated results */ public Map platesAggregated(Collection collection) { Preconditions.checkNotNull(collection, "The plate collection cannot be null."); Map results = new TreeMap(); for(Plate plate : collection) { int aggregated = 0; Plate clone = new Plate(plate); for (Well well : plate) { aggregated += well(well); } results.put(clone, aggregated); } return results; } /** * Returns the aggregated number of data points for each plate. * @param PlateInteger[] array of plates * @return map of plates and aggregated results */ public Map platesAggregated(Plate[] array) { Preconditions.checkNotNull(array, "The plate array cannot be null."); Map results = new TreeMap(); for(Plate plate : array) { int aggregated = 0; Plate clone = new Plate(plate); for (Well well : plate) { aggregated += well(well); } results.put(clone, aggregated); } return results; } /* --------------- Well statistics for all wells in a set -------------- */ /** * Returns the number of data points for each well in the well set. * @param WellSet the well set * @return map of wells and results */ public Map set(WellSet set) { Preconditions.checkNotNull(set, "The set cannot be null."); Map result = new TreeMap(); for (Well well : set) { Well clone = new Well(well); result.put(clone, well(well)); } return result; } /* --------------------- Aggregated set statistics --------------------- */ /** * Returns the aggregated number of data points for the well set. * @param WellSet the well set * @return the aggregated result */ public int setsAggregated(WellSet set) { Preconditions.checkNotNull(set, "The well set cannot be null."); int aggregated = 0; for (Well well : set) { aggregated += well(well); } return aggregated; } /** * Returns the aggregated number of data points for each well set. * @param Collection collection of well sets * @return map of well sets and aggregated results */ public Map setsAggregated(Collection collection) { Preconditions.checkNotNull(collection, "The well set collection cannot be null."); Map results = new TreeMap(); for(WellSet set : collection) { int aggregated = 0; WellSet clone = new WellSet(set); for (Well well : set) { aggregated += well(well); } results.put(clone, aggregated); } return results; } /** * Returns the aggregated number of data points for each well set. * @param WellSetInteger[] array of well sets * @return map of well sets and aggregated results */ public Map setsAggregated(WellSet[] array) { Preconditions.checkNotNull(array, "The well set array cannot be null."); Map results = new TreeMap(); for(WellSet set : array) { int aggregated = 0; WellSet clone = new WellSet(set); for (Well well : set) { aggregated += well(well); } results.put(clone, aggregated); } return results; } /* -------------------------- Well statistics -------------------------- */ /** * Returns the number of well data points. * @param Well the well * @return the result */ public int well(Well well) { Preconditions.checkNotNull(well, "The well cannot be null."); return well.size(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy