
org.apache.regexp.RECompiler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of saferegex Show documentation
Show all versions of saferegex Show documentation
saferegex is a tool for testing regular expressions for ReDoS vulnerabilities.
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.regexp;
import java.util.Hashtable;
/**
* A regular expression compiler class. This class compiles a pattern string into a
* regular expression program interpretable by the RE evaluator class. The 'recompile'
* command line tool uses this compiler to pre-compile regular expressions for use
* with RE. For a description of the syntax accepted by RECompiler and what you can
* do with regular expressions, see the documentation for the RE matcher class.
*
* @see RE
* @see recompile
*
* @author Jonathan Locke
* @author Michael McCallum
* @version $Id: RECompiler.java 518156 2007-03-14 14:31:26Z vgritsenko $
*/
public class RECompiler
{
// The compiled program
char[] instruction; // The compiled RE 'program' instruction buffer
int lenInstruction; // The amount of the program buffer currently in use
// Input state for compiling regular expression
String pattern; // Input string
int len; // Length of the pattern string
int idx; // Current input index into ac
int parens; // Total number of paren pairs
// Node flags
static final int NODE_NORMAL = 0; // No flags (nothing special)
static final int NODE_NULLABLE = 1; // True if node is potentially null
static final int NODE_TOPLEVEL = 2; // True if top level expr
// Special types of 'escapes'
static final int ESC_MASK = 0xffff0; // Escape complexity mask
static final int ESC_BACKREF = 0xfffff; // Escape is really a backreference
static final int ESC_COMPLEX = 0xffffe; // Escape isn't really a true character
static final int ESC_CLASS = 0xffffd; // Escape represents a whole class of characters
// {m,n} stacks
static final int bracketUnbounded = -1; // Unbounded value
int bracketMin; // Minimum number of matches
int bracketOpt; // Additional optional matches
// Lookup table for POSIX character class names
static final Hashtable hashPOSIX = new Hashtable();
static
{
hashPOSIX.put("alnum", new Character(RE.POSIX_CLASS_ALNUM));
hashPOSIX.put("alpha", new Character(RE.POSIX_CLASS_ALPHA));
hashPOSIX.put("blank", new Character(RE.POSIX_CLASS_BLANK));
hashPOSIX.put("cntrl", new Character(RE.POSIX_CLASS_CNTRL));
hashPOSIX.put("digit", new Character(RE.POSIX_CLASS_DIGIT));
hashPOSIX.put("graph", new Character(RE.POSIX_CLASS_GRAPH));
hashPOSIX.put("lower", new Character(RE.POSIX_CLASS_LOWER));
hashPOSIX.put("print", new Character(RE.POSIX_CLASS_PRINT));
hashPOSIX.put("punct", new Character(RE.POSIX_CLASS_PUNCT));
hashPOSIX.put("space", new Character(RE.POSIX_CLASS_SPACE));
hashPOSIX.put("upper", new Character(RE.POSIX_CLASS_UPPER));
hashPOSIX.put("xdigit", new Character(RE.POSIX_CLASS_XDIGIT));
hashPOSIX.put("javastart", new Character(RE.POSIX_CLASS_JSTART));
hashPOSIX.put("javapart", new Character(RE.POSIX_CLASS_JPART));
}
/**
* Constructor. Creates (initially empty) storage for a regular expression program.
*/
public RECompiler()
{
// Start off with a generous, yet reasonable, initial size
instruction = new char[128];
lenInstruction = 0;
}
/**
* Ensures that n more characters can fit in the program buffer.
* If n more can't fit, then the size is doubled until it can.
* @param n Number of additional characters to ensure will fit.
*/
void ensure(int n)
{
// Get current program length
int curlen = instruction.length;
// If the current length + n more is too much
if (lenInstruction + n >= curlen)
{
// Double the size of the program array until n more will fit
while (lenInstruction + n >= curlen)
{
curlen *= 2;
}
// Allocate new program array and move data into it
char[] newInstruction = new char[curlen];
System.arraycopy(instruction, 0, newInstruction, 0, lenInstruction);
instruction = newInstruction;
}
}
/**
* Emit a single character into the program stream.
* @param c Character to add
*/
void emit(char c)
{
// Make room for character
ensure(1);
// Add character
instruction[lenInstruction++] = c;
}
/**
* Inserts a node with a given opcode and opdata at insertAt. The node relative next
* pointer is initialized to 0.
* @param opcode Opcode for new node
* @param opdata Opdata for new node (only the low 16 bits are currently used)
* @param insertAt Index at which to insert the new node in the program
*/
void nodeInsert(char opcode, int opdata, int insertAt)
{
// Make room for a new node
ensure(RE.nodeSize);
// Move everything from insertAt to the end down nodeSize elements
System.arraycopy(instruction, insertAt, instruction, insertAt + RE.nodeSize, lenInstruction - insertAt);
instruction[insertAt /* + RE.offsetOpcode */] = opcode;
instruction[insertAt + RE.offsetOpdata ] = (char) opdata;
instruction[insertAt + RE.offsetNext ] = 0;
lenInstruction += RE.nodeSize;
}
/**
* Appends a node to the end of a node chain
* @param node Start of node chain to traverse
* @param pointTo Node to have the tail of the chain point to
*/
void setNextOfEnd(int node, int pointTo)
{
// Traverse the chain until the next offset is 0
int next = instruction[node + RE.offsetNext];
// while the 'node' is not the last in the chain
// and the 'node' is not the last in the program.
while ( next != 0 && node < lenInstruction )
{
// if the node we are supposed to point to is in the chain then
// point to the end of the program instead.
// Michael McCallum
// FIXME: This is a _hack_ to stop infinite programs.
// I believe that the implementation of the reluctant matches is wrong but
// have not worked out a better way yet.
if (node == pointTo) {
pointTo = lenInstruction;
}
node += next;
next = instruction[node + RE.offsetNext];
}
// if we have reached the end of the program then dont set the pointTo.
// im not sure if this will break any thing but passes all the tests.
if ( node < lenInstruction ) {
// Some patterns result in very large programs which exceed
// capacity of the short used for specifying signed offset of the
// next instruction. Example: a{1638}
int offset = pointTo - node;
if (offset != (short) offset) {
throw new RESyntaxException("Exceeded short jump range.");
}
// Point the last node in the chain to pointTo.
instruction[node + RE.offsetNext] = (char) (short) offset;
}
}
/**
* Adds a new node
* @param opcode Opcode for node
* @param opdata Opdata for node (only the low 16 bits are currently used)
* @return Index of new node in program
*/
int node(char opcode, int opdata)
{
// Make room for a new node
ensure(RE.nodeSize);
// Add new node at end
instruction[lenInstruction /* + RE.offsetOpcode */] = opcode;
instruction[lenInstruction + RE.offsetOpdata ] = (char) opdata;
instruction[lenInstruction + RE.offsetNext ] = 0;
lenInstruction += RE.nodeSize;
// Return index of new node
return lenInstruction - RE.nodeSize;
}
/**
* Throws a new internal error exception
* @exception Error Thrown in the event of an internal error.
*/
void internalError() throws Error
{
throw new Error("Internal error!");
}
/**
* Throws a new syntax error exception
* @exception RESyntaxException Thrown if the regular expression has invalid syntax.
*/
void syntaxError(String s) throws RESyntaxException
{
throw new RESyntaxException(s);
}
/**
* Match bracket {m,n} expression put results in bracket member variables
* @exception RESyntaxException Thrown if the regular expression has invalid syntax.
*/
void bracket() throws RESyntaxException
{
// Current character must be a '{'
if (idx >= len || pattern.charAt(idx++) != '{')
{
internalError();
}
// Next char must be a digit
if (idx >= len || !Character.isDigit(pattern.charAt(idx)))
{
syntaxError("Expected digit");
}
// Get min ('m' of {m,n}) number
StringBuffer number = new StringBuffer();
while (idx < len && Character.isDigit(pattern.charAt(idx)))
{
number.append(pattern.charAt(idx++));
}
try
{
bracketMin = Integer.parseInt(number.toString());
}
catch (NumberFormatException e)
{
syntaxError("Expected valid number");
}
// If out of input, fail
if (idx >= len)
{
syntaxError("Expected comma or right bracket");
}
// If end of expr, optional limit is 0
if (pattern.charAt(idx) == '}')
{
idx++;
bracketOpt = 0;
return;
}
// Must have at least {m,} and maybe {m,n}.
if (idx >= len || pattern.charAt(idx++) != ',')
{
syntaxError("Expected comma");
}
// If out of input, fail
if (idx >= len)
{
syntaxError("Expected comma or right bracket");
}
// If {m,} max is unlimited
if (pattern.charAt(idx) == '}')
{
idx++;
bracketOpt = bracketUnbounded;
return;
}
// Next char must be a digit
if (idx >= len || !Character.isDigit(pattern.charAt(idx)))
{
syntaxError("Expected digit");
}
// Get max number
number.setLength(0);
while (idx < len && Character.isDigit(pattern.charAt(idx)))
{
number.append(pattern.charAt(idx++));
}
try
{
bracketOpt = Integer.parseInt(number.toString()) - bracketMin;
}
catch (NumberFormatException e)
{
syntaxError("Expected valid number");
}
// Optional repetitions must be >= 0
if (bracketOpt < 0)
{
syntaxError("Bad range");
}
// Must have close brace
if (idx >= len || pattern.charAt(idx++) != '}')
{
syntaxError("Missing close brace");
}
}
/**
* Match an escape sequence. Handles quoted chars and octal escapes as well
* as normal escape characters. Always advances the input stream by the
* right amount. This code "understands" the subtle difference between an
* octal escape and a backref. You can access the type of ESC_CLASS or
* ESC_COMPLEX or ESC_BACKREF by looking at pattern[idx - 1].
* @return ESC_* code or character if simple escape
* @exception RESyntaxException Thrown if the regular expression has invalid syntax.
*/
int escape() throws RESyntaxException
{
// "Shouldn't" happen
if (pattern.charAt(idx) != '\\')
{
internalError();
}
// Escape shouldn't occur as last character in string!
if (idx + 1 == len)
{
syntaxError("Escape terminates string");
}
// Switch on character after backslash
idx += 2;
char escapeChar = pattern.charAt(idx - 1);
switch (escapeChar)
{
case RE.E_BOUND:
case RE.E_NBOUND:
return ESC_COMPLEX;
case RE.E_ALNUM:
case RE.E_NALNUM:
case RE.E_SPACE:
case RE.E_NSPACE:
case RE.E_DIGIT:
case RE.E_NDIGIT:
return ESC_CLASS;
case 'u':
case 'x':
{
// Exact required hex digits for escape type
int hexDigits = (escapeChar == 'u' ? 4 : 2);
// Parse up to hexDigits characters from input
int val = 0;
for ( ; idx < len && hexDigits-- > 0; idx++)
{
// Get char
char c = pattern.charAt(idx);
// If it's a hexadecimal digit (0-9)
if (c >= '0' && c <= '9')
{
// Compute new value
val = (val << 4) + c - '0';
}
else
{
// If it's a hexadecimal letter (a-f)
c = Character.toLowerCase(c);
if (c >= 'a' && c <= 'f')
{
// Compute new value
val = (val << 4) + (c - 'a') + 10;
}
else
{
// If it's not a valid digit or hex letter, the escape must be invalid
// because hexDigits of input have not been absorbed yet.
syntaxError("Expected " + hexDigits + " hexadecimal digits after \\" + escapeChar);
}
}
}
return val;
}
case 't':
return '\t';
case 'n':
return '\n';
case 'r':
return '\r';
case 'f':
return '\f';
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
// An octal escape starts with a 0 or has two digits in a row
if ((idx < len && Character.isDigit(pattern.charAt(idx))) || escapeChar == '0')
{
// Handle \nnn octal escapes
int val = escapeChar - '0';
if (idx < len && Character.isDigit(pattern.charAt(idx)))
{
val = ((val << 3) + (pattern.charAt(idx++) - '0'));
if (idx < len && Character.isDigit(pattern.charAt(idx)))
{
val = ((val << 3) + (pattern.charAt(idx++) - '0'));
}
}
return val;
}
// It's actually a backreference (\[1-9]), not an escape
return ESC_BACKREF;
default:
// Simple quoting of a character
return escapeChar;
}
}
/**
* Compile a character class
* @return Index of class node
* @exception RESyntaxException Thrown if the regular expression has invalid syntax.
*/
int characterClass() throws RESyntaxException
{
// Check for bad calling or empty class
if (pattern.charAt(idx) != '[')
{
internalError();
}
// Check for unterminated or empty class
if ((idx + 1) >= len || pattern.charAt(++idx) == ']')
{
syntaxError("Empty or unterminated class");
}
// Check for POSIX character class
if (idx < len && pattern.charAt(idx) == ':')
{
// Skip colon
idx++;
// POSIX character classes are denoted with lowercase ASCII strings
int idxStart = idx;
while (idx < len && pattern.charAt(idx) >= 'a' && pattern.charAt(idx) <= 'z')
{
idx++;
}
// Should be a ":]" to terminate the POSIX character class
if ((idx + 1) < len && pattern.charAt(idx) == ':' && pattern.charAt(idx + 1) == ']')
{
// Get character class
String charClass = pattern.substring(idxStart, idx);
// Select the POSIX class id
Character i = (Character)hashPOSIX.get(charClass);
if (i != null)
{
// Move past colon and right bracket
idx += 2;
// Return new POSIX character class node
return node(RE.OP_POSIXCLASS, i.charValue());
}
syntaxError("Invalid POSIX character class '" + charClass + "'");
}
syntaxError("Invalid POSIX character class syntax");
}
// Try to build a class. Create OP_ANYOF node
int ret = node(RE.OP_ANYOF, 0);
// Parse class declaration
char CHAR_INVALID = Character.MAX_VALUE;
char last = CHAR_INVALID;
char simpleChar;
boolean include = true;
boolean definingRange = false;
int idxFirst = idx;
char rangeStart = Character.MIN_VALUE;
char rangeEnd;
RERange range = new RERange();
while (idx < len && pattern.charAt(idx) != ']')
{
switchOnCharacter:
// Switch on character
switch (pattern.charAt(idx))
{
case '^':
include = !include;
if (idx == idxFirst)
{
range.include(Character.MIN_VALUE, Character.MAX_VALUE, true);
}
idx++;
continue;
case '\\':
{
// Escape always advances the stream
int c;
switch (c = escape ())
{
case ESC_COMPLEX:
case ESC_BACKREF:
// Word boundaries and backrefs not allowed in a character class!
syntaxError("Bad character class");
case ESC_CLASS:
// Classes can't be an endpoint of a range
if (definingRange)
{
syntaxError("Bad character class");
}
// Handle specific type of class (some are ok)
switch (pattern.charAt(idx - 1))
{
case RE.E_NSPACE:
range.include(Character.MIN_VALUE, 7, include); // [Min - \b )
range.include((char) 11, include); // ( \n - \f )
range.include(14, 31, include); // ( \r - ' ')
range.include(33, Character.MAX_VALUE, include); // (' ' - Max]
break;
case RE.E_NALNUM:
range.include(Character.MIN_VALUE, '/', include); // [Min - '0')
range.include(':', '@', include); // ('9' - 'A')
range.include('[', '^', include); // ('Z' - '_')
range.include('`', include); // ('_' - 'a')
range.include('{', Character.MAX_VALUE, include); // ('z' - Max]
break;
case RE.E_NDIGIT:
range.include(Character.MIN_VALUE, '/', include); // [Min - '0')
range.include(':', Character.MAX_VALUE, include); // ('9' - Max]
break;
case RE.E_SPACE:
range.include('\t', include);
range.include('\r', include);
range.include('\f', include);
range.include('\n', include);
range.include('\b', include);
range.include(' ', include);
break;
case RE.E_ALNUM:
range.include('a', 'z', include);
range.include('A', 'Z', include);
range.include('_', include);
// Fall through!
case RE.E_DIGIT:
range.include('0', '9', include);
break;
}
// Make last char invalid (can't be a range start)
last = CHAR_INVALID;
break;
default:
// Escape is simple so treat as a simple char
simpleChar = (char) c;
break switchOnCharacter;
}
}
continue;
case '-':
// Start a range if one isn't already started
if (definingRange)
{
syntaxError("Bad class range");
}
definingRange = true;
// If no last character, start of range is 0
rangeStart = (last == CHAR_INVALID ? 0 : last);
// Premature end of range. define up to Character.MAX_VALUE
if ((idx + 1) < len && pattern.charAt(++idx) == ']')
{
simpleChar = Character.MAX_VALUE;
break;
}
continue;
default:
simpleChar = pattern.charAt(idx++);
break;
}
// Handle simple character simpleChar
if (definingRange)
{
// if we are defining a range make it now
rangeEnd = simpleChar;
// Actually create a range if the range is ok
if (rangeStart >= rangeEnd)
{
syntaxError("Bad character class");
}
range.include(rangeStart, rangeEnd, include);
// We are done defining the range
last = CHAR_INVALID;
definingRange = false;
}
else
{
// If simple character and not start of range, include it
if (idx >= len || pattern.charAt(idx) != '-')
{
range.include(simpleChar, include);
}
last = simpleChar;
}
}
// Shouldn't be out of input
if (idx == len)
{
syntaxError("Unterminated character class");
}
// Absorb the ']' end of class marker
idx++;
// Emit character class definition
instruction[ret + RE.offsetOpdata] = (char)range.num;
for (int i = 0; i < range.num; i++)
{
emit((char)range.minRange[i]);
emit((char)range.maxRange[i]);
}
return ret;
}
/**
* Absorb an atomic character string. This method is a little tricky because
* it can un-include the last character of string if a closure operator follows.
* This is correct because *+? have higher precedence than concatentation (thus
* ABC* means AB(C*) and NOT (ABC)*).
* @return Index of new atom node
* @exception RESyntaxException Thrown if the regular expression has invalid syntax.
*/
int atom() throws RESyntaxException
{
// Create a string node
int ret = node(RE.OP_ATOM, 0);
// Length of atom
int lenAtom = 0;
// Loop while we've got input
atomLoop:
while (idx < len)
{
// Is there a next char?
if ((idx + 1) < len)
{
char c = pattern.charAt(idx + 1);
// If the next 'char' is an escape, look past the whole escape
if (pattern.charAt(idx) == '\\')
{
int idxEscape = idx;
escape();
if (idx < len)
{
c = pattern.charAt(idx);
}
idx = idxEscape;
}
// Switch on next char
switch (c)
{
case '{':
case '?':
case '*':
case '+':
// If the next character is a closure operator and our atom is non-empty, the
// current character should bind to the closure operator rather than the atom
if (lenAtom != 0)
{
break atomLoop;
}
}
}
// Switch on current char
switch (pattern.charAt(idx))
{
case ']':
case '^':
case '$':
case '.':
case '[':
case '(':
case ')':
case '|':
break atomLoop;
case '{':
case '?':
case '*':
case '+':
// We should have an atom by now
if (lenAtom == 0)
{
// No atom before closure
syntaxError("Missing operand to closure");
}
break atomLoop;
case '\\':
{
// Get the escaped character (advances input automatically)
int idxBeforeEscape = idx;
int c = escape();
// Check if it's a simple escape (as opposed to, say, a backreference)
if ((c & ESC_MASK) == ESC_MASK)
{
// Not a simple escape, so backup to where we were before the escape.
idx = idxBeforeEscape;
break atomLoop;
}
// Add escaped char to atom
emit((char) c);
lenAtom++;
}
break;
default:
// Add normal character to atom
emit(pattern.charAt(idx++));
lenAtom++;
break;
}
}
// This "shouldn't" happen
if (lenAtom == 0)
{
internalError();
}
// Emit the atom length into the program
instruction[ret + RE.offsetOpdata] = (char)lenAtom;
return ret;
}
/**
* Match a terminal node.
* @param flags Flags
* @return Index of terminal node (closeable)
* @exception RESyntaxException Thrown if the regular expression has invalid syntax.
*/
int terminal(int[] flags) throws RESyntaxException
{
switch (pattern.charAt(idx))
{
case RE.OP_EOL:
case RE.OP_BOL:
case RE.OP_ANY:
return node(pattern.charAt(idx++), 0);
case '[':
return characterClass();
case '(':
return expr(flags);
case ')':
syntaxError("Unexpected close paren");
case '|':
internalError();
case ']':
syntaxError("Mismatched class");
case 0:
syntaxError("Unexpected end of input");
case '?':
case '+':
case '{':
case '*':
syntaxError("Missing operand to closure");
case '\\':
{
// Don't forget, escape() advances the input stream!
int idxBeforeEscape = idx;
// Switch on escaped character
switch (escape())
{
case ESC_CLASS:
case ESC_COMPLEX:
flags[0] &= ~NODE_NULLABLE;
return node(RE.OP_ESCAPE, pattern.charAt(idx - 1));
case ESC_BACKREF:
{
char backreference = (char)(pattern.charAt(idx - 1) - '0');
if (parens <= backreference)
{
syntaxError("Bad backreference");
}
flags[0] |= NODE_NULLABLE;
return node(RE.OP_BACKREF, backreference);
}
default:
// We had a simple escape and we want to have it end up in
// an atom, so we back up and fall though to the default handling
idx = idxBeforeEscape;
flags[0] &= ~NODE_NULLABLE;
break;
}
}
}
// Everything above either fails or returns.
// If it wasn't one of the above, it must be the start of an atom.
flags[0] &= ~NODE_NULLABLE;
return atom();
}
/**
* Compile a possibly closured terminal
* @param flags Flags passed by reference
* @return Index of closured node
* @exception RESyntaxException Thrown if the regular expression has invalid syntax.
*/
int closure(int[] flags) throws RESyntaxException
{
// Before terminal
int idxBeforeTerminal = idx;
// Values to pass by reference to terminal()
int[] terminalFlags = { NODE_NORMAL };
// Get terminal symbol
int ret = terminal(terminalFlags);
// Or in flags from terminal symbol
flags[0] |= terminalFlags[0];
// Advance input, set NODE_NULLABLE flag and do sanity checks
if (idx >= len)
{
return ret;
}
boolean greedy = true;
char closureType = pattern.charAt(idx);
switch (closureType)
{
case '?':
case '*':
// The current node can be null
flags[0] |= NODE_NULLABLE;
// Drop through
case '+':
// Eat closure character
idx++;
// Drop through
case '{':
// Don't allow blantant stupidity
int opcode = instruction[ret /* + RE.offsetOpcode */];
if (opcode == RE.OP_BOL || opcode == RE.OP_EOL)
{
syntaxError("Bad closure operand");
}
if ((terminalFlags[0] & NODE_NULLABLE) != 0)
{
syntaxError("Closure operand can't be nullable");
}
}
// If the next character is a '?', make the closure non-greedy (reluctant)
if (idx < len && pattern.charAt(idx) == '?')
{
idx++;
greedy = false;
}
if (greedy)
{
// Actually do the closure now
switch (closureType)
{
case '{':
{
bracket();
int bracketEnd = idx;
int bracketMin = this.bracketMin;
int bracketOpt = this.bracketOpt;
// Pointer to the last terminal
int pos = ret;
// Process min first
for (int c = 0; c < bracketMin; c++)
{
// Rewind stream and run it through again - more matchers coming
idx = idxBeforeTerminal;
setNextOfEnd(pos, pos = terminal(terminalFlags));
}
// Do the right thing for maximum ({m,})
if (bracketOpt == bracketUnbounded)
{
// Drop through now and closure expression.
// We are done with the {m,} expr, so skip rest
idx = bracketEnd;
nodeInsert(RE.OP_STAR, 0, pos);
setNextOfEnd(pos + RE.nodeSize, pos);
break;
}
else if (bracketOpt > 0)
{
int opt[] = new int[bracketOpt + 1];
// Surround first optional terminal with MAYBE
nodeInsert(RE.OP_MAYBE, 0, pos);
opt[0] = pos;
// Add all the rest optional terminals with preceeding MAYBEs
for (int c = 1; c < bracketOpt; c++)
{
opt[c] = node(RE.OP_MAYBE, 0);
// Rewind stream and run it through again - more matchers coming
idx = idxBeforeTerminal;
terminal(terminalFlags);
}
// Tie ends together
int end = opt[bracketOpt] = node(RE.OP_NOTHING, 0);
for (int c = 0; c < bracketOpt; c++)
{
setNextOfEnd(opt[c], end);
setNextOfEnd(opt[c] + RE.nodeSize, opt[c + 1]);
}
}
else
{
// Rollback terminal - no opt matchers present
lenInstruction = pos;
node(RE.OP_NOTHING, 0);
}
// We are done. skip the reminder of {m,n} expr
idx = bracketEnd;
break;
}
case '?':
{
nodeInsert(RE.OP_MAYBE, 0, ret);
int n = node(RE.OP_NOTHING, 0);
setNextOfEnd(ret, n);
setNextOfEnd(ret + RE.nodeSize, n);
break;
}
case '*':
{
nodeInsert(RE.OP_STAR, 0, ret);
setNextOfEnd(ret + RE.nodeSize, ret);
break;
}
case '+':
{
nodeInsert(RE.OP_CONTINUE, 0, ret);
int n = node(RE.OP_PLUS, 0);
setNextOfEnd(ret + RE.nodeSize, n);
setNextOfEnd(n, ret);
break;
}
}
}
else
{
// Actually do the closure now
switch (closureType)
{
case '?':
{
nodeInsert(RE.OP_RELUCTANTMAYBE, 0, ret);
int n = node(RE.OP_NOTHING, 0);
setNextOfEnd(ret, n);
setNextOfEnd(ret + RE.nodeSize, n);
break;
}
case '*':
{
nodeInsert(RE.OP_RELUCTANTSTAR, 0, ret);
setNextOfEnd(ret + RE.nodeSize, ret);
break;
}
case '+':
{
nodeInsert(RE.OP_CONTINUE, 0, ret);
int n = node(RE.OP_RELUCTANTPLUS, 0);
setNextOfEnd(n, ret);
setNextOfEnd(ret + RE.nodeSize, n);
break;
}
}
}
return ret;
}
/**
* Compile body of one branch of an or operator (implements concatenation)
*
* @param flags Flags passed by reference
* @return Pointer to first node in the branch
* @exception RESyntaxException Thrown if the regular expression has invalid syntax.
*/
int branch(int[] flags) throws RESyntaxException
{
// Get each possibly closured piece and concat
int node;
int ret = -1;
int chain = -1;
int[] closureFlags = new int[1];
boolean nullable = true;
while (idx < len && pattern.charAt(idx) != '|' && pattern.charAt(idx) != ')')
{
// Get new node
closureFlags[0] = NODE_NORMAL;
node = closure(closureFlags);
if (closureFlags[0] == NODE_NORMAL)
{
nullable = false;
}
// If there's a chain, append to the end
if (chain != -1)
{
setNextOfEnd(chain, node);
}
// Chain starts at current
chain = node;
if (ret == -1) {
ret = node;
}
}
// If we don't run loop, make a nothing node
if (ret == -1)
{
ret = node(RE.OP_NOTHING, 0);
}
// Set nullable flag for this branch
if (nullable)
{
flags[0] |= NODE_NULLABLE;
}
return ret;
}
/**
* Compile an expression with possible parens around it. Paren matching
* is done at this level so we can tie the branch tails together.
*
* @param flags Flag value passed by reference
* @return Node index of expression in instruction array
* @exception RESyntaxException Thrown if the regular expression has invalid syntax.
*/
int expr(int[] flags) throws RESyntaxException
{
// Create open paren node unless we were called from the top level (which has no parens)
int paren = -1;
int ret = -1;
int closeParens = parens;
if ((flags[0] & NODE_TOPLEVEL) == 0 && pattern.charAt(idx) == '(')
{
// if its a cluster ( rather than a proper subexpression ie with backrefs )
if (idx + 2 < len && pattern.charAt(idx + 1) == '?' && pattern.charAt(idx + 2) == ':')
{
paren = 2;
idx += 3;
ret = node(RE.OP_OPEN_CLUSTER, 0);
}
else
{
paren = 1;
idx++;
ret = node(RE.OP_OPEN, parens++);
}
}
flags[0] &= ~NODE_TOPLEVEL;
// Process contents of first branch node
boolean open = false;
int branch = branch(flags);
if (ret == -1)
{
ret = branch;
}
else
{
setNextOfEnd(ret, branch);
}
// Loop through branches
while (idx < len && pattern.charAt(idx) == '|')
{
// Now open the first branch since there are more than one
if (!open) {
nodeInsert(RE.OP_BRANCH, 0, branch);
open = true;
}
idx++;
setNextOfEnd(branch, branch = node(RE.OP_BRANCH, 0));
branch(flags);
}
// Create an ending node (either a close paren or an OP_END)
int end;
if (paren > 0)
{
if (idx < len && pattern.charAt(idx) == ')')
{
idx++;
}
else
{
syntaxError("Missing close paren");
}
if (paren == 1)
{
end = node(RE.OP_CLOSE, closeParens);
}
else
{
end = node(RE.OP_CLOSE_CLUSTER, 0);
}
}
else
{
end = node(RE.OP_END, 0);
}
// Append the ending node to the ret nodelist
setNextOfEnd(ret, end);
// Hook the ends of each branch to the end node
int currentNode = ret;
int nextNodeOffset = instruction[currentNode + RE.offsetNext];
// while the next node o
while (nextNodeOffset != 0 && currentNode < lenInstruction)
{
// If branch, make the end of the branch's operand chain point to the end node.
if (instruction[currentNode /* + RE.offsetOpcode */] == RE.OP_BRANCH)
{
setNextOfEnd(currentNode + RE.nodeSize, end);
}
nextNodeOffset = instruction[currentNode + RE.offsetNext];
currentNode += nextNodeOffset;
}
// Return the node list
return ret;
}
/**
* Compiles a regular expression pattern into a program runnable by the pattern
* matcher class 'RE'.
* @param pattern Regular expression pattern to compile (see RECompiler class
* for details).
* @return A compiled regular expression program.
* @exception RESyntaxException Thrown if the regular expression has invalid syntax.
* @see RECompiler
* @see RE
*/
public REProgram compile(String pattern) throws RESyntaxException
{
// Initialize variables for compilation
this.pattern = pattern; // Save pattern in instance variable
len = pattern.length(); // Precompute pattern length for speed
idx = 0; // Set parsing index to the first character
lenInstruction = 0; // Set emitted instruction count to zero
parens = 1; // Set paren level to 1 (the implicit outer parens)
// Initialize pass by reference flags value
int[] flags = { NODE_TOPLEVEL };
// Parse expression
expr(flags);
// Should be at end of input
if (idx != len)
{
if (pattern.charAt(idx) == ')')
{
syntaxError("Unmatched close paren");
}
syntaxError("Unexpected input remains");
}
// Return the result
char[] ins = new char[lenInstruction];
System.arraycopy(instruction, 0, ins, 0, lenInstruction);
return new REProgram(parens, ins);
}
/**
* Local, nested class for maintaining character ranges for character classes.
*/
class RERange
{
int size = 16; // Capacity of current range arrays
int[] minRange = new int[size]; // Range minima
int[] maxRange = new int[size]; // Range maxima
int num = 0; // Number of range array elements in use
/**
* Deletes the range at a given index from the range lists
* @param index Index of range to delete from minRange and maxRange arrays.
*/
void delete(int index)
{
// Return if no elements left or index is out of range
if (num == 0 || index >= num)
{
return;
}
// Move elements down
while (++index < num)
{
if (index - 1 >= 0)
{
minRange[index-1] = minRange[index];
maxRange[index-1] = maxRange[index];
}
}
// One less element now
num--;
}
/**
* Merges a range into the range list, coalescing ranges if possible.
* @param min Minimum end of range
* @param max Maximum end of range
*/
void merge(int min, int max)
{
// Loop through ranges
for (int i = 0; i < num; i++)
{
// Min-max is subsumed by minRange[i]-maxRange[i]
if (min >= minRange[i] && max <= maxRange[i])
{
return;
}
// Min-max subsumes minRange[i]-maxRange[i]
else if (min <= minRange[i] && max >= maxRange[i])
{
delete(i);
merge(min, max);
return;
}
// Min is in the range, but max is outside
else if (min >= minRange[i] && min <= maxRange[i])
{
min = minRange[i];
delete(i);
merge(min, max);
return;
}
// Max is in the range, but min is outside
else if (max >= minRange[i] && max <= maxRange[i])
{
max = maxRange[i];
delete(i);
merge(min, max);
return;
}
}
// Must not overlap any other ranges
if (num >= size)
{
size *= 2;
int[] newMin = new int[size];
int[] newMax = new int[size];
System.arraycopy(minRange, 0, newMin, 0, num);
System.arraycopy(maxRange, 0, newMax, 0, num);
minRange = newMin;
maxRange = newMax;
}
minRange[num] = min;
maxRange[num] = max;
num++;
}
/**
* Removes a range by deleting or shrinking all other ranges
* @param min Minimum end of range
* @param max Maximum end of range
*/
void remove(int min, int max)
{
// Loop through ranges
for (int i = 0; i < num; i++)
{
// minRange[i]-maxRange[i] is subsumed by min-max
if (minRange[i] >= min && maxRange[i] <= max)
{
delete(i);
return;
}
// min-max is subsumed by minRange[i]-maxRange[i]
else if (min >= minRange[i] && max <= maxRange[i])
{
int minr = minRange[i];
int maxr = maxRange[i];
delete(i);
if (minr < min)
{
merge(minr, min - 1);
}
if (max < maxr)
{
merge(max + 1, maxr);
}
return;
}
// minRange is in the range, but maxRange is outside
else if (minRange[i] >= min && minRange[i] <= max)
{
minRange[i] = max + 1;
return;
}
// maxRange is in the range, but minRange is outside
else if (maxRange[i] >= min && maxRange[i] <= max)
{
maxRange[i] = min - 1;
return;
}
}
}
/**
* Includes (or excludes) the range from min to max, inclusive.
* @param min Minimum end of range
* @param max Maximum end of range
* @param include True if range should be included. False otherwise.
*/
void include(int min, int max, boolean include)
{
if (include)
{
merge(min, max);
}
else
{
remove(min, max);
}
}
/**
* Includes a range with the same min and max
* @param minmax Minimum and maximum end of range (inclusive)
* @param include True if range should be included. False otherwise.
*/
void include(char minmax, boolean include)
{
include(minmax, minmax, include);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy