
math.Complex Maven / Gradle / Ivy
/*
* Copyright (c) 2016 Jacob Rachiele
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without restriction
* including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense
* and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
* do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
* PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Contributors:
*
* Jacob Rachiele
*/
package math;
/**
* An immutable and thread-safe implementation of a complex number. Subclasses must maintain immutability.
*
* @author Jacob Rachiele
*
*/
public class Complex implements FieldElement {
private static final double EPSILON = Math.ulp(1.0);
private final double real;
private final double im;
/**
* Construct a new complex number with real and imaginary parts both equal to 0.
*/
public Complex() {
this(0.0, 0.0);
}
/**
* Construct a new complex number with zero imaginary part, i.e, a real number.
*
* @param real the real part of the new complex number.
*/
public Complex(final double real) {
this(real, 0.0);
}
/**
* Construct a new complex number with the given real and imaginary parts.
*
* @param real the real part of the new complex number.
* @param im the imaginary part of the new complex number.
*/
public Complex(final double real, final double im) {
this.real = real;
this.im = im;
}
@Override
public final Complex plus(final Complex other) {
return new Complex(this.real + other.real, this.im + other.im);
}
/**
* Add this element to the given double.
*
* @param other the double to add to this element.
* @return this element added to the given double.
*/
public final Complex plus(final double other) {
return new Complex(this.real + other, this.im);
}
@Override
public final Complex minus(final Complex other) {
return new Complex(this.real - other.real, this.im - other.im);
}
@Override
public final Complex times(final Complex other) {
final double realPart = this.real * other.real - this.im * other.im;
final double imPart = this.real * other.im + other.real * this.im;
return new Complex(realPart, imPart);
}
/**
* Multiply this element by the given double.
*
* @param other the double to multiply this element by.
* @return this element multiplied by the given double.
*/
public Complex times(final double other) {
return new Complex(this.real * other, this.im * other);
}
/**
* Divide this element by the given double.
*
* @param other the double to divide this element by.
* @return this element divided by the given double.
*/
public final Complex dividedBy(final double other) {
return new Complex(this.real/other, this.im/other);
}
@Override
public final Complex conjugate() {
return new Complex(this.real, -this.im);
}
@Override
public final double abs() {
return Math.sqrt(real * real + im * im);
}
@Override
public Complex sqrt() {
if (this.real < EPSILON && Math.abs(this.im) < EPSILON) {
return new Complex(0.0, Math.sqrt(abs()));
}
// The following algorithm fails only in the case where this complex number is
// a negative real number, but that case was taken care of in the preceding if branch.
// http://math.stackexchange.com/questions/44406/how-do-i-get-the-square-root-of-a-complex-number
final double r = abs();
final Complex zr = this.plus(r);
return zr.dividedBy(zr.abs()).times(Math.sqrt(r));
}
/**
* The real part of this complex number.
*
* @return the real part of this complex number.
*/
public final double real() {
return this.real;
}
/**
* The imaginary part of this complex number.
*
* @return the imaginary part of this complex number.
*/
public final double im() {
return this.im;
}
/**
* Returns true if this complex number is also a real number and false otherwise.
*
* @return true if this complex number is also a real number and false otherwise.
*/
public final boolean isReal() {
return Math.abs(this.im) < EPSILON;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(im);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(real);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (obj == null) return false;
if (getClass() != obj.getClass()) return false;
Complex other = (Complex) obj;
return Math.abs(im - other.im) <= EPSILON && Math.abs(real - other.real) <= EPSILON;
}
@Override
public String toString() {
return "(real: " + real + " im: " + im + ")";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy