All Downloads are FREE. Search and download functionalities are using the official Maven repository.

math.polynomial.interpolation.NewtonPolynomial Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2016 Jacob Rachiele
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
 * and associated documentation files (the "Software"), to deal in the Software without restriction
 * including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense
 * and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
 * do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all copies or
 * substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED
 * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
 * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * Contributors:
 *
 * Jacob Rachiele
 */
package math.polynomial.interpolation;

import math.function.CubicFunction;
import math.function.QuadraticFunction;

import java.util.Arrays;

/**
 * Represents the Newton form
 * of an interpolation polynomial.
 *
 * @author Jacob Rachiele
 */
public final class NewtonPolynomial {

    private final double[] point;
    private final double[] value;
    private final double[] coefficients;

    /**
     * Create a new NewtonPolynomial with the given points and function values.
     *
     * @param point the array of sample points.
     * @param value the array of sample function values at each corresponding point.
     */
    public NewtonPolynomial(final double[] point, final double[] value) {
        if (point.length != value.length) {
            throw new IllegalArgumentException(
                    "There must be one function value for each point, " + "but there were " + point.length +
                    " points and " + value.length + " values.");
        }
        if (point.length == 0) {
            throw new IllegalArgumentException(
                    "A divided difference requires at least one point, " + "but no points were given.");
        }
        this.point = point.clone();
        this.value = value.clone();
        this.coefficients = new double[value.length];
        for (int i = 0; i < point.length; i++) {
            this.coefficients[i] = getDividedDifference(0, i);
        }
    }

    /**
     * Get the ith coefficient of this Newton Polynomial.
     *
     * @param i the index of the coefficient.
     * @return the ith coefficient of this Newton Polynomial.
     */
    double getCoefficient(final int i) {
        return this.coefficients[i];
    }

    private double getDividedDifference(final int start, final int end) {
        int k = end - start;
        if (k < 0) {
            throw new IllegalArgumentException(
                    "start must be less than end, but start was " + start + " and end was " + end);
        } else if (k == 0) {
            return value[end];
        } else if (k == 1) {
            return (value[end] - value[start]) / (point[end] - point[start]);
        } else {
            return (getDividedDifference(start + 1, end) - getDividedDifference(start, end - 1)) /
                   (point[end] - point[start]);
        }
    }

    /**
     * Evaluate this Newton Polynomial at the given point.
     *
     * @param x the point at which to evaluate this Newton Polynomial.
     * @return the value of the polynomial at the given point.
     */
    public double evaluateAt(double x) {
        double product = 1.0;
        double result = coefficients[0];
        for (int i = 1; i < coefficients.length; i++) {
            product *= x - point[i - 1];
            result += coefficients[i] * product;
        }
        return result;
    }

    /**
     * Convert this NewtonPolynomial to the standard form of a quadratic function, f(x)
     * = ax2 + bx + c.
     *
     * @return this Newton Polynomial converted to standard quadratic form.
     * @throws IllegalStateException if the degree of this NewtonPolynomial is lower than 2.
     */
    public QuadraticFunction toQuadratic() throws IllegalStateException {
        if (coefficients.length < 3) {
            throw new IllegalStateException(
                    "The function is of degree " + (coefficients.length - 1) + " and thus not quadratic.");
        }
        double a = coefficients[2];
        double b = coefficients[1] - coefficients[2] * (point[0] + point[1]);
        double c = coefficients[0] - coefficients[1] * point[0] + coefficients[2] * point[0] * point[1];
        return new QuadraticFunction(a, b, c);
    }

    /**
     * Convert this NewtonPolynomial to the standard form of a cubic function, f(x)
     * = ax3 + bx2 + cx + d.
     *
     * @return this Newton Polynomial converted to standard cubic form.
     * @throws IllegalStateException if the degree of this NewtonPolynomial is lower than 3.
     */
    public CubicFunction toCubic() throws IllegalStateException {
        if (coefficients.length < 4) {
            throw new IllegalStateException(
                    "The function is of degree " + (coefficients.length - 1) + " and thus not cubic.");
        }
        double a = coefficients[3];
        double b = coefficients[2] - coefficients[3] * (point[0] + point[1] + point[2]);
        double c = coefficients[1] - coefficients[2] * (point[0] + point[1]) +
                   coefficients[3] * (point[0] * point[1] + point[0] * point[2] + point[1] * point[2]);
        double d = coefficients[0] - coefficients[1] * point[0] + coefficients[2] * point[0] * point[1] -
                   coefficients[3] * point[0] * point[1] * point[2];
        return new CubicFunction(a, b, c, d);
    }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;

        NewtonPolynomial that = (NewtonPolynomial) o;

        return Arrays.equals(coefficients, that.coefficients);
    }

    @Override
    public int hashCode() {
        return Arrays.hashCode(coefficients);
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy