
timeseries.models.RandomWalk Maven / Gradle / Ivy
/*
* Copyright (c) 2016 Jacob Rachiele
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without restriction
* including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense
* and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
* do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
* PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Contributors:
*
* Jacob Rachiele
*/
package timeseries.models;
import lombok.NonNull;
import stats.distributions.Distribution;
import stats.distributions.Normal;
import timeseries.TimePeriod;
import timeseries.TimeSeries;
import java.time.OffsetDateTime;
/**
* A model for a random walk process. Some important characteristics of the random walk are that the
* process variance increases with time (non-stationarity) and that the optimal forecast
* at any point in the future is equal to the last observed value.
*
* @author Jacob Rachiele
*/
public final class RandomWalk implements Model {
private final TimeSeries timeSeries;
private final TimeSeries fittedSeries;
private final TimeSeries residuals;
/**
* Create a new random walk model from the given time series of observations.
*
* @param observed the observed series.
*/
public RandomWalk(@NonNull final TimeSeries observed) {
if (observed.n() < 1) {
throw new IllegalArgumentException("A random walk model requires at least one observation.");
}
this.timeSeries = observed;
this.fittedSeries = fitSeries();
this.residuals = calculateResiduals();
}
/**
* Simulate a random walk assuming that the errors, or random shocks, follow the given Distribution.
*
* @param dist The probability distribution that observations are drawn from.
* @param n The number of observations to simulate.
* @return the simulated series.
*/
public static TimeSeries simulate(@NonNull final Distribution dist, final int n) {
if (n < 1) {
throw new IllegalArgumentException("the number of observations to simulate must be a positive integer.");
}
final double[] series = new double[n];
series[0] = dist.rand();
for (int t = 1; t < n; t++) {
series[t] = series[t - 1] + dist.rand();
}
return new TimeSeries(series);
}
/**
* Simulate a random walk assuming errors follow a Normal (Gaussian) Distribution with the given mean and standard
* deviation.
*
* @param mean the mean of the Normal distribution the observations are drawn from.
* @param sigma the standard deviation of the Normal distribution the observations are drawn from.
* @param n the number of observations to simulate.
* @return the simulated series.
*/
public static TimeSeries simulate(final double mean, final double sigma, final int n) {
final Distribution dist = new Normal(mean, sigma);
return simulate(dist, n);
}
/**
* Simulate a random walk assuming errors follow a Normal (Gaussian) Distribution with zero mean and with the
* provided standard deviation.
*
* @param sigma the standard deviation of the Normal distribution the observations are drawn from.
* @param n the number of observations to simulate.
* @return the simulated series.
*/
public static TimeSeries simulate(final double sigma, final int n) {
final Distribution dist = new Normal(0, sigma);
return simulate(dist, n);
}
/**
* Simulate a random walk assuming errors follow a standard Normal (Gaussian) Distribution.
*
* @param n the number of observations to simulate.
* @return the simulated series.
*/
public static TimeSeries simulate(final int n) {
final Distribution dist = new Normal(0, 1);
return simulate(dist, n);
}
@Override
public TimeSeries pointForecast(final int steps) {
int n = timeSeries.n();
TimePeriod timePeriod = timeSeries.timePeriod();
final OffsetDateTime startTime = timeSeries.observationTimes().get(n - 1)
.plus(timePeriod.periodLength() * timePeriod.timeUnit().unitLength(),
timePeriod.timeUnit().temporalUnit());
double[] forecast = new double[steps];
for (int t = 0; t < steps; t++) {
forecast[t] = timeSeries.at(n - 1);
}
return new TimeSeries(timePeriod, startTime, forecast);
}
@Override
public Forecast forecast(final int steps, final double alpha) {
return new RandomWalkForecast(this, steps, alpha);
}
@Override
public TimeSeries timeSeries() {
return this.timeSeries;
}
@Override
public TimeSeries fittedSeries() {
return this.fittedSeries;
}
@Override
public TimeSeries residuals() {
return this.residuals;
}
private TimeSeries fitSeries() {
final double[] fitted = new double[timeSeries.n()];
fitted[0] = timeSeries.at(0);
for (int t = 1; t < timeSeries.n(); t++) {
fitted[t] = timeSeries.at(t - 1);
}
return new TimeSeries(timeSeries.timePeriod(), timeSeries.observationTimes().get(0), fitted);
}
private TimeSeries calculateResiduals() {
final double[] residuals = new double[timeSeries.n()];
for (int t = 1; t < timeSeries.n(); t++) {
residuals[t] = timeSeries.at(t) - fittedSeries.at(t);
}
return new TimeSeries(timeSeries.timePeriod(), timeSeries.observationTimes().get(0), residuals);
}
@Override
public String toString() {
return "Random walk time series model";
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
RandomWalk that = (RandomWalk) o;
if (timeSeries != null ? !timeSeries.equals(that.timeSeries) : that.timeSeries != null) return false;
if (!fittedSeries.equals(that.fittedSeries)) return false;
return residuals.equals(that.residuals);
}
@Override
public int hashCode() {
int result = timeSeries != null ? timeSeries.hashCode() : 0;
result = 31 * result + fittedSeries.hashCode();
result = 31 * result + residuals.hashCode();
return result;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy