![JAR search and dependency download from the Maven repository](/logo.png)
data.DoubleFunctions Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of timeseries Show documentation
Show all versions of timeseries Show documentation
Time Series Analysis in Java
The newest version!
/*
* Copyright (c) 2016 Jacob Rachiele
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without restriction
* including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense
* and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
* do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
* PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Contributors:
*
* Jacob Rachiele
*/
package data;
import com.google.common.primitives.Doubles;
import math.stats.Statistics;
import java.util.ArrayList;
import java.util.List;
/**
* Static methods for creating, manipulating, and operating on arrays of primitive doubles.
*
* @author Jacob Rachiele
*/
public final class DoubleFunctions {
private static final double EPSILON = Math.ulp(1.0);
private DoubleFunctions() {
}
/**
* Create and return a new array from the given data.
*
* @param data the data to create a new array from.
* @return a new array from the given data.
*/
public static double[] arrayFrom(double... data) {
return data.clone();
}
/**
* Create a new array by combining the elements of the input arrays in the order given.
*
* @param arrays the arrays to combine.
* @return a new array formed by combining the elements of the input arrays.
*/
public static double[] combine(double[]... arrays) {
int newArrayLength = 0;
for (double[] array : arrays) {
newArrayLength += array.length;
}
double[] newArray = new double[newArrayLength];
newArrayLength = 0;
for (double[] array : arrays) {
System.arraycopy(array, 0, newArray, newArrayLength, array.length);
newArrayLength += array.length;
}
return newArray;
}
/**
* Append the given value to the end of the original array, and return the result in a new array.
*
* @param original the array to be appended.
* @param value the value to append to the end of the array.
* @return a new array consisting of the original array with the given value appended to the end.
*/
public static double[] append(double[] original, double value) {
double[] newArray = new double[original.length + 1];
System.arraycopy(original, 0, newArray, 0, original.length);
newArray[original.length] = value;
return newArray;
}
/**
* Create a new primitive double array from the given list of data.
*
* @param data the data to use in the new array.
* @return a new array from the given list of data.
*/
public static double[] arrayFrom(List data) {
final int size = data.size();
final double[] doubles = new double[size];
for (int i = 0; i < size; i++) {
doubles[i] = data.get(i);
}
return doubles;
}
/**
* Create a new primitive double array from the given boxed Double array.
*
* @param data the data to use in the new array.
* @return a new array from the given boxed Double array.
*/
public static double[] arrayFrom(Double[] data) {
final int size = data.length;
final double[] doubles = new double[size];
for (int i = 0; i < size; i++) {
doubles[i] = data[i];
}
return doubles;
}
/**
* Create a new array from the data in the given array at the specified indices.
*
* @param data the data to create the new array from.
* @param indices the indices at which to select data from the given array.
* @return a new array from the data in the given array at the specified indices.
*/
static double[] arrayFrom(double[] data, int... indices) {
double[] newArray = new double[indices.length];
for (int i = 0; i < newArray.length; i++) {
newArray[i] = data[indices[i]];
}
return newArray;
}
/**
* Create and return a new array of the given size with every value set to the given value.
*
* @param size the number of elements of the new array.
* @param value the value to fill every element of the array with.
* @return a new array of the given size with every value set to the given value.
*/
public static double[] fill(final int size, final double value) {
final double[] filled = new double[size];
for (int i = 0; i < filled.length; i++) {
filled[i] = value;
}
return filled;
}
/**
* Create a new list of boxed Doubles from the given array of primitive doubles.
*
* @param data the data to populate the new list with.
* @return a new list of boxed Doubles from the given array of primitive doubles.
*/
public static List listFrom(final double... data) {
return Doubles.asList(data.clone());
}
public static List> twoDListFrom(final double[]... data) {
List> newList = new ArrayList<>(data.length);
for (double[] array : data) {
newList.add(Doubles.asList(array.clone()));
}
return newList;
}
public static double[][] twoDArrayFrom(final List> data) {
double[][] newArray = new double[data.size()][];
for (int i = 0; i < data.size(); i++) {
newArray[i] = arrayFrom(data.get(i));
}
return newArray;
}
/**
* Return a slice of the data between the given indices.
*
* @param data the data to slice.
* @param from the starting index.
* @param to the ending index. The value at this index is excluded from the result.
* @return a slice of the data between the given indices.
*/
public static double[] slice(final double[] data, final int from, final int to) {
final double[] sliced = new double[to - from];
System.arraycopy(data, from, sliced, 0, to - from);
return sliced;
}
/**
* Transform the given data using a Box-Cox transformation with the given lambda value.
*
* @param data the data to transform.
* @param lambda the Box-Cox parameter.
* @return the data transformed using a Box-Cox transformation with the given lambda value.
*/
public static double[] boxCox(final double[] data, final double lambda) {
final double[] boxCoxed = new double[data.length];
if (Math.abs(lambda) < EPSILON) {
for (int i = 0; i < boxCoxed.length; i++) {
boxCoxed[i] = Math.log(data[i]);
}
} else {
for (int i = 0; i < boxCoxed.length; i++) {
boxCoxed[i] = (Math.pow(data[i], lambda) - 1) / lambda;
}
}
return boxCoxed;
}
/**
* Invert the Box-Cox transformation, returning the original untransformed data.
*
* @param data the transformed data to invert.
* @param lambda the Box-Cox parameter used in the transformation.
* @return the original, untransformed data in a new array.
*/
public static double[] inverseBoxCox(final double[] data, final double lambda) {
final double[] invBoxCoxed = new double[data.length];
if (Math.abs(lambda) < EPSILON) {
for (int i = 0; i < invBoxCoxed.length; i++) {
invBoxCoxed[i] = Math.exp(data[i]);
}
} else {
for (int i = 0; i < invBoxCoxed.length; i++) {
invBoxCoxed[i] = Math.pow(data[i] * lambda + 1, 1 / lambda);
}
}
return invBoxCoxed;
}
/**
* Take the square root of each element of the given array and return the result in a new array.
*
* @param data the data to take the square root of.
* @return a new array containing the square root of each element.
*/
public static double[] sqrt(final double... data) {
final double[] sqrtData = new double[data.length];
for (int i = 0; i < sqrtData.length; i++) {
sqrtData[i] = Math.sqrt(data[i]);
}
return sqrtData;
}
// public static double[] reverse(final double... data) {
// int n = data.length;
// double[] reversed = new double[n];
// for (int i = 0; i < reversed.length; i++, --n) {
// reversed[i] = data[n];
// }
// return reversed;
// }
//
// public static List reverseArrayToList(final double... data) {
// int n = data.length;
// List reversed = new ArrayList<>(n);
// while (n > 0) {
// reversed.add(data[--n]);
// }
// return reversed;
// }
// public static double[] reverseListToArray(final List data) {
// int n = data.size();
// double[] reversed = new double[data.size()];
// for (int i = 0; i < reversed.length; i++) {
// reversed[i] = data.get(--n);
// }
// return reversed;
// }
//
// public static List reverse(final List data) {
// int n = data.size();
// List reversed = new ArrayList<>(n);
// while (n > 0) {
// reversed.add(data.get(--n));
// }
// return reversed;
// }
/**
* Round the given value to the specified precision.
*
* @param value the value to round.
* @param precision the decimal place precision to round to.
* @return the given value rounded to the specified precision.
*/
public static double round(final double value, final int precision) {
double scale = Math.pow(10.0, precision);
return Math.round(value * scale) / scale;
}
/**
* Round the given values to the specified precision.
*
* @param values the values to round.
* @param precision the decimal place precision to round to.
* @return the given values rounded to the specified precision.
*/
public static double[] round(final double[] values, final int precision) {
double[] rounded = new double[values.length];
for (int i = 0; i < values.length; i++) {
rounded[i] = round(values[i], precision);
}
return rounded;
}
/**
* Remove the mean from the given data and return the result in a new array.
*
* @param data the data to remove the mean from.
* @return the data with the mean removed.
*/
static double[] demean(final double[] data) {
final double mean = Statistics.meanOf(data);
final double[] demeaned = new double[data.length];
for (int t = 0; t < data.length; t++) {
demeaned[t] = data[t] - mean;
}
return demeaned;
}
/**
* Take the additive inverse, or negative, of each element of the given array and return the result in a new array.
*
* @param data the data to take the additive inverse of.
* @return a new array containing the additive inverse, or negative, of each element.
*/
static double[] negativeOf(final double[] data) {
final double[] negative = new double[data.length];
for (int i = 0; i < negative.length; i++) {
negative[i] = -data[i];
}
return negative;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy