All Downloads are FREE. Search and download functionalities are using the official Maven repository.

data.regression.MultipleLinearRegressionPrediction Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2017 Jacob Rachiele
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
 * and associated documentation files (the "Software"), to deal in the Software without restriction
 * including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense
 * and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
 * do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all copies or
 * substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED
 * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
 * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * Contributors:
 *
 * Jacob Rachiele
 */

package data.regression;

import math.linear.doubles.Matrix;
import math.linear.doubles.Vector;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import static data.DoubleFunctions.arrayFrom;
import static data.DoubleFunctions.listFrom;
import static data.DoubleFunctions.twoDArrayFrom;

public class MultipleLinearRegressionPrediction implements LinearRegressionPrediction {

    private final LinearRegressionModel model;
    private final List predictedValues;

    MultipleLinearRegressionPrediction(LinearRegressionModel model, List> newPredictors) {
        this.model = model;
        Matrix predictionMatrix = new Matrix(twoDArrayFrom(newPredictors), Matrix.Order.COLUMN_MAJOR);
        Vector beta = Vector.from(arrayFrom(model.beta()));
        this.predictedValues = listFrom(predictionMatrix.times(beta).elements());
    }

    private double[][] copy(double[][] values) {
        double[][] copied = new double[values.length][];
        for (int i = 0; i < values.length; i++) {
            copied[i] = values[i].clone();
        }
        return copied;
    }

    @Override
    public List predictedValues() {
        return new ArrayList<>(this.predictedValues);
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy