All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.life.lab.leisure.common.utils.SnowflakeIDGenerator Maven / Gradle / Ivy

There is a newer version: 0.0.12.RELEASE
Show newest version
package com.github.life.lab.leisure.common.utils;

import lombok.extern.slf4j.Slf4j;

import java.net.NetworkInterface;
import java.net.SocketException;
import java.net.UnknownHostException;
import java.text.ParseException;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.ThreadLocalRandom;

/**
 * 11111111 11111111 11111111 1111111 11111111 11111111 11111111 11111111
 * 

*

* Generate unique IDs using the Twitter Snowflake algorithm (see https://github.com/twitter/snowflake). Snowflake IDs * are 64 bit positive longs composed of: * - 41 bits time stamp * - 10 bits machine id * - 12 bits sequence number * * @author weiwunb * @link org.apache.marmotta.kiwi.generator.SnowflakeIDGenerator * @link https://segmentfault.com/a/1190000011282426 * @link https://www.cnblogs.com/relucent/p/4955340.html */ @Slf4j public class SnowflakeIDGenerator { /** * 标尺时间 * 2018-10-01 12:00:00 * 时间戳在64bits总所占位数: 41bits * 最大时间戳的最大范围[0, 2199023255551] * 从标尺时间开始,2199023255551毫秒(69.73057年)之后此ID生成器将失效 */ private static final long RULER_TIME = 1538366400000L; /** * 数据中心在64bits中所占的位数: 10bits */ private static final long DATA_CENTER_ID_BITS = 10L; /** * 序列在64bits中所占的位数: 12bits */ private static final long SEQUENCE_BITS = 12L; /** * 数据中心最大的范围 [0, 1023] */ private static final long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS); /** * 数据中心左移偏移量: 12bits */ private static final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS; /** * 时间戳左移偏移量:12+10=22bits */ private static final long TIMESTAMP_LEFT_SHIFT = SEQUENCE_BITS + DATA_CENTER_ID_BITS; /** * 序列mask * 00000000 00000000 00000000 0000000 00000000 00000000 00001111 11111111 */ private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS); /** * 数据中心ID */ private long dataCenterId; /** * 原始算法默认从0开始, 改进方法:初始化时,随机取[0,1]其中一个 * 毫秒内累计的规则: * 从0开始累积: 0,1,2,3,4...4095 * 从1开始累积: 1,2,3,4,5...4095 * 此字段涉及多线程并发写场景 设置volatile保障happens-before 让写立刻对其他线程可见 */ private volatile long sequence = ThreadLocalRandom.current().nextInt(2); /** * 上次生成ID的时间截 * 此字段涉及多线程并发写场景 设置volatile保障happens-before 让写立刻对其他线程可见 */ private volatile long lastTimestamp = -1L; /** * @param dataCenterId 数据中心ID范围 [0, 1023] */ public SnowflakeIDGenerator(long dataCenterId) { if (dataCenterId == 0) { try { this.dataCenterId = getDataCenterId(); } catch (SocketException | UnknownHostException | NullPointerException e) { this.dataCenterId = ThreadLocalRandom.current().nextInt((int) MAX_DATA_CENTER_ID) + 1; log.warn("SNOWFLAKE: could not determine machine address; using random dataCenterId:{}", this.dataCenterId); } } else { this.dataCenterId = dataCenterId; } if (this.dataCenterId > MAX_DATA_CENTER_ID || dataCenterId < 0) { this.dataCenterId = ThreadLocalRandom.current().nextInt((int) MAX_DATA_CENTER_ID) + 1; log.warn("SNOWFLAKE: dataCenterId > MAX_DATA_CENTER_ID; using random dataCenterId:{}", this.dataCenterId); } log.info("SNOWFLAKE: initialised with dataCenterId:{}, sequence:{}", this.dataCenterId, this.sequence); } public static void main(String[] args) throws ParseException { long dataCenter = 1; SnowflakeIDGenerator snowflakeIDGenerator = new SnowflakeIDGenerator(dataCenter); Set ids = new HashSet<>(); long start = System.currentTimeMillis(); for (int i = 0; i < 1000000; i++) { ids.add(snowflakeIDGenerator.getId()); } System.out.println(ids.parallelStream().count()); System.out.println(ids.parallelStream().filter(e -> e % 2 == 0).count()); System.out.println(System.currentTimeMillis() - start); } /** * 阻塞到下一个毫秒,直到获得新的时间戳 * * @param lastTimestamp 上次生成ID的时间截 * @return 当前时间戳 */ protected long tilNextMillis(long lastTimestamp) { long timestamp = System.currentTimeMillis(); while (timestamp <= lastTimestamp) { timestamp = System.currentTimeMillis(); } return timestamp; } protected long getDataCenterId() throws SocketException, UnknownHostException { NetworkInterface network = null; Enumeration en = NetworkInterface.getNetworkInterfaces(); while (en.hasMoreElements()) { NetworkInterface nint = en.nextElement(); if (!nint.isLoopback() && nint.getHardwareAddress() != null) { network = nint; break; } } byte[] mac = network.getHardwareAddress(); Random rnd = new Random(); byte rndByte = (byte) (rnd.nextInt() & 0x000000FF); // take the last byte of the MAC address and a random byte as datacenter ID return ((0x000000FF & (long) mac[mac.length - 1]) | (0x0000FF00 & (((long) rndByte) << 8))) >> 6; } /** * Return the next unique id for the type with the given name using the generator's id generation strategy. * * @return */ public synchronized long getId() { // 当前系统时间戳:毫秒 long timestamp = System.currentTimeMillis(); // 如果当前时间小于上一次ID生成时的时间戳,说明系统时钟回退过这个时候应当抛出异常 // 此处采取激进策略:强制线程睡眠 如果是高并发情况下会在此处形成线程在getId方法上排队等待获取锁现象 if (timestamp < lastTimestamp) { log.warn("Clock moved backwards. Refusing to generate id for {} milliseconds.", (lastTimestamp - timestamp)); try { Thread.sleep((lastTimestamp - timestamp)); } catch (InterruptedException e) { throw new IllegalStateException("系统时钟发生倒退,线程:[" + Thread.currentThread().getName() + "在等待时钟恢复时被终止", e); } } // 如果是同一时间生成的(同一毫秒内), 则进行毫秒内序列 // 这种情况只有在极高并发的情况下才会出现: 当前线程和上一个线程 或者是同一个线程前后两次获取本对象实例的锁 if (lastTimestamp == timestamp) { // sequence累加并用SEQUENCE_MASK防止溢出 sequence = (sequence + 1) & SEQUENCE_MASK; // 毫秒内序列溢出,超过4095则归0 if (sequence == 0) { // 阻塞到下一个毫秒,获得新的时间戳 timestamp = tilNextMillis(lastTimestamp); } } else { /** * 时间戳改变,毫秒内序列重置 * 原始算法默认从0开始,但根据线上反馈在并发量不高的情况下会导致大量的偶数ID被生成 * 因为并发量不高的情况下 线程进入getId方法的时差会大于在1毫秒 因此上一次获取ID时的时间戳会很大概率不等于当前时间戳 * 那就有很高的概率sequence都取0 * 改进方法:初始化时,随机取[0,1]其中一个 * 从0开始累积: 0,1,2,3,4...4095 * 从1开始累积: 1,2,3,4,5...4095 */ sequence = ThreadLocalRandom.current().nextInt(2); } // 上次生成ID的时间截 lastTimestamp = timestamp; // 移位并通过或运算拼到一起组成64位的ID long id = ((timestamp - RULER_TIME) << TIMESTAMP_LEFT_SHIFT) | (dataCenterId << DATA_CENTER_ID_SHIFT) | sequence; if (id < 0) { log.warn("ID is smaller than 0: {}", id); } return id; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy