![JAR search and dependency download from the Maven repository](/logo.png)
com.github.lwhite1.tablesaw.api.ml.classification.RandomForest Maven / Gradle / Ivy
package com.github.lwhite1.tablesaw.api.ml.classification;
import com.github.lwhite1.tablesaw.api.CategoryColumn;
import com.github.lwhite1.tablesaw.api.IntColumn;
import com.github.lwhite1.tablesaw.api.NumericColumn;
import com.github.lwhite1.tablesaw.api.ShortColumn;
import com.github.lwhite1.tablesaw.util.DoubleArrays;
import com.google.common.base.Preconditions;
import java.util.SortedSet;
import java.util.TreeSet;
/**
*
*/
public class RandomForest extends AbstractClassifier {
private final smile.classification.RandomForest classifierModel;
public static RandomForest learn(int nTrees, IntColumn classes, NumericColumn ... columns) {
int[] classArray = classes.data().toIntArray();
return new RandomForest(nTrees, classArray, columns);
}
public static RandomForest learn(int nTrees, ShortColumn classes, NumericColumn ... columns) {
int[] classArray = classes.toIntArray();
return new RandomForest(nTrees, classArray, columns);
}
public static RandomForest learn(int nTrees, CategoryColumn classes, NumericColumn ... columns) {
int[] classArray = classes.data().toIntArray();
return new RandomForest(nTrees, classArray, columns);
}
private RandomForest(int nTrees, int[] classArray, NumericColumn ... columns) {
double[][] data = DoubleArrays.to2dArray(columns);
this.classifierModel = new smile.classification.RandomForest(data, classArray, nTrees);
}
public int predict(double[] data) {
return classifierModel.predict(data);
}
public ConfusionMatrix predictMatrix(ShortColumn labels, NumericColumn ... predictors) {
Preconditions.checkArgument(predictors.length > 0);
SortedSet
© 2015 - 2025 Weber Informatics LLC | Privacy Policy