com.github.lwhite1.tablesaw.api.DoubleColumn Maven / Gradle / Ivy
Show all versions of tablesaw Show documentation
package com.github.lwhite1.tablesaw.api;
import com.github.lwhite1.tablesaw.columns.AbstractColumn;
import com.github.lwhite1.tablesaw.columns.Column;
import com.github.lwhite1.tablesaw.filtering.DoubleBiPredicate;
import com.github.lwhite1.tablesaw.filtering.DoublePredicate;
import com.github.lwhite1.tablesaw.io.TypeUtils;
import com.github.lwhite1.tablesaw.reducing.NumericReduceUtils;
import com.github.lwhite1.tablesaw.store.ColumnMetadata;
import com.github.lwhite1.tablesaw.util.BitmapBackedSelection;
import com.github.lwhite1.tablesaw.util.Selection;
import com.github.lwhite1.tablesaw.util.Stats;
import com.google.common.base.Preconditions;
import com.google.common.base.Strings;
import it.unimi.dsi.fastutil.doubles.DoubleArrayList;
import it.unimi.dsi.fastutil.doubles.DoubleArrays;
import it.unimi.dsi.fastutil.doubles.DoubleComparator;
import it.unimi.dsi.fastutil.doubles.DoubleIterable;
import it.unimi.dsi.fastutil.doubles.DoubleIterator;
import it.unimi.dsi.fastutil.doubles.DoubleOpenHashSet;
import it.unimi.dsi.fastutil.doubles.DoubleSet;
import it.unimi.dsi.fastutil.ints.IntComparator;
import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import static com.github.lwhite1.tablesaw.columns.DoubleColumnUtils.*;
import static com.github.lwhite1.tablesaw.reducing.NumericReduceUtils.*;
/**
* A column in a base table that contains double precision floating point values
*/
public class DoubleColumn extends AbstractColumn implements DoubleIterable, NumericColumn {
public static final double MISSING_VALUE = (double) ColumnType.DOUBLE.getMissingValue();
private static final int BYTE_SIZE = 8;
private static int DEFAULT_ARRAY_SIZE = 128;
private DoubleArrayList data;
public DoubleColumn(String name) {
super(name);
data = new DoubleArrayList(DEFAULT_ARRAY_SIZE);
}
public DoubleColumn(String name, int initialSize) {
super(name);
data = new DoubleArrayList(initialSize);
}
public DoubleColumn(ColumnMetadata metadata) {
super(metadata);
data = new DoubleArrayList(metadata.getSize());
}
public int size() {
return data.size();
}
@Override
public Table summary() {
return stats().asTable();
}
public Stats stats() {
return Stats.create(this);
}
@Override
public int countUnique() {
DoubleSet doubles = new DoubleOpenHashSet();
for (int i = 0; i < size(); i++) {
doubles.add(data.getDouble(i));
}
return doubles.size();
}
/**
* Returns the largest ("top") n values in the column
*
* @param n The maximum number of records to return. The actual number will be smaller if n is greater than the
* number of observations in the column
* @return A list, possibly empty, of the largest observations
*/
public DoubleArrayList top(int n) {
DoubleArrayList top = new DoubleArrayList();
double[] values = data.toDoubleArray();
DoubleArrays.parallelQuickSort(values, reverseDoubleComparator);
for (int i = 0; i < n && i < values.length; i++) {
top.add(values[i]);
}
return top;
}
/**
* Returns the smallest ("bottom") n values in the column
*
* @param n The maximum number of records to return. The actual number will be smaller if n is greater than the
* number of observations in the column
* @return A list, possibly empty, of the smallest n observations
*/
public DoubleArrayList bottom(int n) {
DoubleArrayList bottom = new DoubleArrayList();
double[] values = data.toDoubleArray();
DoubleArrays.parallelQuickSort(values);
for (int i = 0; i < n && i < values.length; i++) {
bottom.add(values[i]);
}
return bottom;
}
@Override
public DoubleColumn unique() {
DoubleSet doubles = new DoubleOpenHashSet();
for (int i = 0; i < size(); i++) {
doubles.add(data.getDouble(i));
}
DoubleColumn column = new DoubleColumn(name() + " Unique values", doubles.size());
doubles.forEach(column::add);
return column;
}
public DoubleArrayList data() {
return data;
}
@Override
public ColumnType type() {
return ColumnType.DOUBLE;
}
public double firstElement() {
if (size() > 0) {
return data.getDouble(0);
}
return MISSING_VALUE;
}
// Reduce functions applied to the whole column
public double sum() {
return sum.reduce(this);
}
public double product() {
return product.reduce(this);
}
public double mean() {
return mean.reduce(this);
}
public double median() {
return median.reduce(this);
}
public double quartile1() {
return quartile1.reduce(this);
}
public double quartile3() {
return quartile3.reduce(this);
}
public double percentile(double percentile) {
return NumericReduceUtils.percentile(this.toDoubleArray(), percentile);
}
public double range() {
return range.reduce(this);
}
public double max() {
return max.reduce(this);
}
public double min() {
return min.reduce(this);
}
public double variance() {
return variance.reduce(this);
}
public double populationVariance() {
return populationVariance.reduce(this);
}
public double standardDeviation() {
return stdDev.reduce(this);
}
public double sumOfLogs() {
return sumOfLogs.reduce(this);
}
public double sumOfSquares() {
return sumOfSquares.reduce(this);
}
public double geometricMean() {
return geometricMean.reduce(this);
}
/**
* Returns the quadraticMean, aka the root-mean-square, for all values in this column
*/
public double quadraticMean() {
return quadraticMean.reduce(this);
}
public double kurtosis() {
return kurtosis.reduce(this);
}
public double skewness() {
return skewness.reduce(this);
}
/**
* Adds the given float to this column
*/
public void add(float f) {
data.add(f);
}
/**
* Adds the given double to this column
*/
public void add(double d) {
data.add(d);
}
// Predicate functions
public Selection isLessThan(double f) {
return select(isLessThan, f);
}
public Selection isMissing() {
return select(isMissing);
}
public Selection isNotMissing() {
return select(isNotMissing);
}
public Selection isGreaterThan(double f) {
return select(isGreaterThan, f);
}
public Selection isGreaterThanOrEqualTo(double f) {
return select(isGreaterThanOrEqualTo, f);
}
public Selection isLessThanOrEqualTo(double f) {
return select(isLessThanOrEqualTo, f);
}
public Selection isEqualTo(double d) {
return select(isEqualTo, d);
}
public Selection isEqualTo(DoubleColumn d) {
Selection results = new BitmapBackedSelection();
int i = 0;
DoubleIterator doubleIterator = d.iterator();
for (double doubles : data) {
if (doubles == doubleIterator.nextDouble()) {
results.add(i);
}
i++;
}
return results;
}
@Override
public String getString(int row) {
return String.valueOf(data.getDouble(row));
}
@Override
public DoubleColumn emptyCopy() {
DoubleColumn column = new DoubleColumn(name());
column.setComment(comment());
return column;
}
@Override
public DoubleColumn emptyCopy(int rowSize) {
DoubleColumn column = new DoubleColumn(name(), rowSize);
column.setComment(comment());
return column;
}
@Override
public void clear() {
data = new DoubleArrayList(DEFAULT_ARRAY_SIZE);
}
@Override
public DoubleColumn copy() {
DoubleColumn column = DoubleColumn.create(name(), data);
column.setComment(comment());
return column;
}
@Override
public void sortAscending() {
Arrays.parallelSort(data.elements());
}
@Override
public void sortDescending() {
DoubleArrays.parallelQuickSort(data.elements(), reverseDoubleComparator);
}
@Override
public boolean isEmpty() {
return data.isEmpty();
}
public static DoubleColumn create(String name) {
return new DoubleColumn(name);
}
public static DoubleColumn create(String name, int initialSize) {
return new DoubleColumn(name, initialSize);
}
public static DoubleColumn create(String name, DoubleArrayList doubles) {
DoubleColumn column = new DoubleColumn(name, doubles.size());
column.data = new DoubleArrayList(doubles.size());
column.data.addAll(doubles);
return column;
}
/**
* Compares two doubles, such that a sort based on this comparator would sort in descending order
*/
DoubleComparator reverseDoubleComparator = new DoubleComparator() {
@Override
public int compare(Double o2, Double o1) {
return (o1 < o2 ? -1 : (o1.equals(o2) ? 0 : 1));
}
@Override
public int compare(double o2, double o1) {
return (o1 < o2 ? -1 : (o1 == o2 ? 0 : 1));
}
};
/**
* Returns the count of missing values in this column
*
* Implementation note: We use NaN for missing, so we can't compare against the MISSING_VALUE and use val != val instead
*/
@Override
public int countMissing() {
int count = 0;
for (int i = 0; i < size(); i++) {
double f = get(i);
if (f != f) {
count++;
}
}
return count;
}
@Override
public void addCell(String object) {
try {
add(convert(object));
} catch (NumberFormatException nfe) {
throw new NumberFormatException(name() + ": " + nfe.getMessage());
} catch (NullPointerException e) {
throw new RuntimeException(name() + ": "
+ String.valueOf(object) + ": "
+ e.getMessage());
}
}
/**
* Returns a double that is parsed from the given String
*
* We remove any commas before parsing
*/
public static double convert(String stringValue) {
if (Strings.isNullOrEmpty(stringValue) || TypeUtils.MISSING_INDICATORS.contains(stringValue)) {
return MISSING_VALUE;
}
Matcher matcher = COMMA_PATTERN.matcher(stringValue);
return Double.parseDouble(matcher.replaceAll(""));
}
/**
* Returns the natural log of the values in this column as a new DoubleColumn
*/
public DoubleColumn logN() {
DoubleColumn newColumn = DoubleColumn.create(name() + "[logN]", size());
for (double value : this) {
newColumn.add(Math.log(value));
}
return newColumn;
}
/**
* Returns the base 10 log of the values in this column as a new DoubleColumn
* @return
*/
public DoubleColumn log10() {
DoubleColumn newColumn = DoubleColumn.create(name() + "[log10]", size());
for (double value : this) {
newColumn.add( Math.log10(value));
}
return newColumn;
}
/**
* Returns the natural log of the values in this column, after adding 1 to each so that zero
* values don't return -Infinity
*/
public DoubleColumn log1p() {
DoubleColumn newColumn = DoubleColumn.create(name() + "[1og1p]", size());
for (double value : this) {
newColumn.add(Math.log1p(value));
}
return newColumn;
}
public DoubleColumn round() {
DoubleColumn newColumn = DoubleColumn.create(name() + "[rounded]", size());
for (double value : this) {
newColumn.add(Math.round(value));
}
return newColumn;
}
/**
* Returns a doubleColumn with the absolute value of each value in this column
*/
public DoubleColumn abs() {
DoubleColumn newColumn = DoubleColumn.create(name() + "[abs]", size());
for (double value : this) {
newColumn.add(Math.abs(value));
}
return newColumn;
}
/**
* Returns a doubleColumn with the square of each value in this column
*/
public DoubleColumn square() {
DoubleColumn newColumn = DoubleColumn.create(name() + "[sq]", size());
for (double value : this) {
newColumn.add(value * value);
}
return newColumn;
}
public DoubleColumn sqrt() {
DoubleColumn newColumn = DoubleColumn.create(name() + "[sqrt]", size());
for (double value : this) {
newColumn.add(Math.sqrt(value));
}
return newColumn;
}
public DoubleColumn cubeRoot() {
DoubleColumn newColumn = DoubleColumn.create(name() + "[cbrt]", size());
for (double value : this) {
newColumn.add(Math.cbrt(value));
}
return newColumn;
}
public DoubleColumn cube() {
DoubleColumn newColumn = DoubleColumn.create(name() + "[cb]", size());
for (double value : this) {
newColumn.add(value * value * value);
}
return newColumn;
}
public DoubleColumn remainder(DoubleColumn column2) {
DoubleColumn result = DoubleColumn.create(name() + " % " + column2.name(), size());
for (int r = 0; r < size(); r++) {
result.add(get(r) % column2.get(r));
}
return result;
}
public DoubleColumn add(DoubleColumn column2) {
DoubleColumn result = DoubleColumn.create(name() + " + " + column2.name(), size());
for (int r = 0; r < size(); r++) {
result.add(get(r) + column2.get(r));
}
return result;
}
public DoubleColumn subtract(DoubleColumn column2) {
DoubleColumn result = DoubleColumn.create(name() + " - " + column2.name(), size());
for (int r = 0; r < size(); r++) {
result.add(get(r) - column2.get(r));
}
return result;
}
public DoubleColumn multiply(DoubleColumn column2) {
DoubleColumn result = DoubleColumn.create(name() + " * " + column2.name(), size());
for (int r = 0; r < size(); r++) {
result.add(get(r) * column2.get(r));
}
return result;
}
public DoubleColumn multiply(IntColumn column2) {
DoubleColumn result = DoubleColumn.create(name() + " * " + column2.name(), size());
for (int r = 0; r < size(); r++) {
result.add(get(r) * column2.get(r));
}
return result;
}
public DoubleColumn multiply(LongColumn column2) {
DoubleColumn result = DoubleColumn.create(name() + " * " + column2.name(), size());
for (int r = 0; r < size(); r++) {
result.add(get(r) * column2.get(r));
}
return result;
}
public DoubleColumn multiply(ShortColumn column2) {
DoubleColumn result = DoubleColumn.create(name() + " * " + column2.name(), size());
for (int r = 0; r < size(); r++) {
result.add(get(r) * column2.get(r));
}
return result;
}
public DoubleColumn divide(DoubleColumn column2) {
DoubleColumn result = DoubleColumn.create(name() + " / " + column2.name(), size());
for (int r = 0; r < size(); r++) {
result.add(get(r) / column2.get(r));
}
return result;
}
public DoubleColumn divide(IntColumn column2) {
DoubleColumn result = DoubleColumn.create(name() + " / " + column2.name(), size());
for (int r = 0; r < size(); r++) {
result.add(get(r) / column2.get(r));
}
return result;
}
public DoubleColumn divide(LongColumn column2) {
DoubleColumn result = DoubleColumn.create(name() + " / " + column2.name(), size());
for (int r = 0; r < size(); r++) {
result.add(get(r) / column2.get(r));
}
return result;
}
public DoubleColumn divide(ShortColumn column2) {
DoubleColumn result = DoubleColumn.create(name() + " / " + column2.name(), size());
for (int r = 0; r < size(); r++) {
result.add(get(r) / column2.get(r));
}
return result;
}
/**
* For each item in the column, returns the same number with the sign changed.
* For example:
* -1.3 returns 1.3,
* 2.135 returns -2.135
* 0 returns 0
*/
public DoubleColumn neg() {
DoubleColumn newColumn = DoubleColumn.create(name() + "[neg]", size());
for (double value : this) {
newColumn.add(value * -1);
}
return newColumn;
}
private static final Pattern COMMA_PATTERN = Pattern.compile(",");
/**
* Compares the given ints, which refer to the indexes of the doubles in this column, according to the values of the
* doubles themselves
*/
@Override
public IntComparator rowComparator() {
return comparator;
}
private final IntComparator comparator = new IntComparator() {
@Override
public int compare(Integer r1, Integer r2) {
double f1 = data.getDouble(r1);
double f2 = data.getDouble(r2);
return Double.compare(f1, f2);
}
public int compare(int r1, int r2) {
double f1 = data.getDouble(r1);
double f2 = data.getDouble(r2);
return Double.compare(f1, f2);
}
};
public double get(int index) {
return data.getDouble(index);
}
@Override
public float getFloat(int index) {
return (float) data.getDouble(index);
}
public double getDouble(int index) {
return data.getDouble(index);
}
public void set(int r, float value) {
data.set(r, value);
}
// TODO(lwhite): Reconsider the implementation of this functionality to allow user to provide a specific max error.
// TODO(lwhite): continued: Also see section in Effective Java on doubleing point comparisons.
Selection isCloseTo(float target) {
Selection results = new BitmapBackedSelection();
int i = 0;
for (double f : data) {
if (Double.compare(f, target) == 0) {
results.add(i);
}
i++;
}
return results;
}
Selection isCloseTo(double target) {
Selection results = new BitmapBackedSelection();
int i = 0;
for (double f : data) {
if (Double.compare(f, 0.0) == 0) {
results.add(i);
}
i++;
}
return results;
}
Selection isPositive() {
return select(isPositive);
}
Selection isNegative() {
return select(isNegative);
}
Selection isNonNegative() {
return select(isNonNegative);
}
public double[] toDoubleArray() {
double[] output = new double[data.size()];
for (int i = 0; i < data.size(); i++) {
output[i] = data.getDouble(i);
}
return output;
}
public String print() {
StringBuilder builder = new StringBuilder();
builder.append(title());
for (double aData : data) {
builder.append(String.valueOf(aData));
builder.append('\n');
}
return builder.toString();
}
@Override
public String toString() {
return "Double column: " + name();
}
@Override
public void append(Column column) {
Preconditions.checkArgument(column.type() == this.type());
DoubleColumn doubleColumn = (DoubleColumn) column;
for (int i = 0; i < doubleColumn.size(); i++) {
add(doubleColumn.get(i));
}
}
@Override
public DoubleIterator iterator() {
return data.iterator();
}
public Selection select(DoublePredicate predicate) {
Selection bitmap = new BitmapBackedSelection();
for (int idx = 0; idx < data.size(); idx++) {
double next = data.getDouble(idx);
if (predicate.test(next)) {
bitmap.add(idx);
}
}
return bitmap;
}
public Selection select(DoubleBiPredicate predicate, double value) {
Selection bitmap = new BitmapBackedSelection();
for (int idx = 0; idx < data.size(); idx++) {
double next = data.getDouble(idx);
if (predicate.test(next, value)) {
bitmap.add(idx);
}
}
return bitmap;
}
DoubleSet asSet() {
return new DoubleOpenHashSet(data);
}
public boolean contains(double value) {
return data.contains(value);
}
@Override
public int byteSize() {
return BYTE_SIZE;
}
/**
* Returns the contents of the cell at rowNumber as a byte[]
*/
@Override
public byte[] asBytes(int rowNumber) {
return ByteBuffer.allocate(BYTE_SIZE).putDouble(get(rowNumber)).array();
}
@Override
public DoubleColumn difference() {
DoubleColumn returnValue = new DoubleColumn(this.name(), this.size());
returnValue.add(DoubleColumn.MISSING_VALUE);
for (int current = 0; current < this.size(); current++) {
if (current + 1 < this.size()) {
/*
* check for missing values:
* note that for doubles you test val != val,
* since a missing double is encoded as Double.NaN and nothing is equal to NaN.
*/
double currentValue = get(current);
double nextValue = get(current + 1);
if (currentValue != currentValue || nextValue != nextValue) {
returnValue.add(Double.NaN);
} else {
returnValue.add(nextValue - currentValue);
}
}
}
return returnValue;
}
}