com.github.megatronking.svg.generator.utils.Matrix Maven / Gradle / Ivy
package com.github.megatronking.svg.generator.utils;
import java.io.PrintWriter;
/**
* The Matrix class holds a 3x3 matrix for transforming coordinates.
*/
public class Matrix {
public static final int MSCALE_X = 0; //!< use with getValues/setValues
public static final int MSKEW_X = 1; //!< use with getValues/setValues
public static final int MTRANS_X = 2; //!< use with getValues/setValues
public static final int MSKEW_Y = 3; //!< use with getValues/setValues
public static final int MSCALE_Y = 4; //!< use with getValues/setValues
public static final int MTRANS_Y = 5; //!< use with getValues/setValues
public static final int MPERSP_0 = 6; //!< use with getValues/setValues
public static final int MPERSP_1 = 7; //!< use with getValues/setValues
public static final int MPERSP_2 = 8; //!< use with getValues/setValues
private final float[] MATRIX = new float[]{1, 0, 0, 0, 1, 0, 0, 0, 1};
/**
* (deep) copy the src matrix into this matrix. If src is null, reset this
* matrix to the identity matrix.
*/
public void set(Matrix src) {
if (src == null) {
reset();
} else {
float[] values = new float[9];
src.getValues(values);
setValues(values);
}
}
/** Set the matrix to identity */
public void reset() {
MATRIX[MSCALE_X] = 1;
MATRIX[MSKEW_X] = 0;
MATRIX[MTRANS_X] = 0;
MATRIX[MSKEW_Y] = 1;
MATRIX[MSCALE_Y] = 0;
MATRIX[MTRANS_Y] = 0;
MATRIX[MPERSP_0] = 0;
MATRIX[MPERSP_1] = 0;
MATRIX[MPERSP_2] = 1;
}
/**
* Preconcats the matrix with the specified matrix.
* M' = M * other
*/
public boolean preConcat(Matrix other) {
float[] otherValue = new float[9];
other.getValues(otherValue);
float[] newValue = new float[9];
newValue[MSCALE_X] = MATRIX[MSCALE_X] * otherValue[MSCALE_X] + MATRIX[MSKEW_X] * otherValue[MSKEW_Y]
+ MATRIX[MTRANS_X] * otherValue[MPERSP_0];
newValue[MSKEW_X] = MATRIX[MSCALE_X] * otherValue[MSKEW_X] + MATRIX[MSKEW_X] * otherValue[MSCALE_Y]
+ MATRIX[MTRANS_X] * otherValue[MPERSP_1];
newValue[MTRANS_X] = MATRIX[MSCALE_X] * otherValue[MTRANS_X] + MATRIX[MSKEW_X] * otherValue[MTRANS_Y]
+ MATRIX[MTRANS_X] * otherValue[MPERSP_2];
newValue[MSKEW_Y] = MATRIX[MSKEW_Y] * otherValue[MSCALE_X] + MATRIX[MSCALE_Y] * otherValue[MSKEW_Y]
+ MATRIX[MTRANS_Y] * otherValue[MPERSP_0];
newValue[MSCALE_Y] = MATRIX[MSKEW_Y] * otherValue[MSKEW_X] + MATRIX[MSCALE_Y] * otherValue[MSCALE_Y]
+ MATRIX[MTRANS_Y] * otherValue[MPERSP_1];
newValue[MTRANS_Y] = MATRIX[MSKEW_Y] * otherValue[MTRANS_X] + MATRIX[MSCALE_Y] * otherValue[MTRANS_Y]
+ MATRIX[MTRANS_Y] * otherValue[MPERSP_2];
newValue[MPERSP_0] = MATRIX[MPERSP_0] * otherValue[MSCALE_X] + MATRIX[MPERSP_1] * otherValue[MSKEW_Y]
+ MATRIX[MPERSP_2] * otherValue[MPERSP_0];
newValue[MPERSP_1] = MATRIX[MPERSP_0] * otherValue[MSKEW_X] + MATRIX[MPERSP_1] * otherValue[MSCALE_Y]
+ MATRIX[MPERSP_2] * otherValue[MPERSP_1];
newValue[MPERSP_2] = MATRIX[MPERSP_0] * otherValue[MTRANS_X] + MATRIX[MPERSP_1] * otherValue[MTRANS_Y]
+ MATRIX[MPERSP_2] * otherValue[MPERSP_2];
setValues(newValue);
return true;
}
/**
* Postconcats the matrix with the specified translation.
* M' = T(dx, dy) * M
*/
public boolean postTranslate(float dx, float dy) {
Matrix matrix = new Matrix();
matrix.setValues(new float[] {1, 0, dx, 0, 1, dy, 0, 0, 1});
Matrix current = new Matrix();
current.setValues(MATRIX);
matrix.preConcat(current);
set(matrix);
return true;
}
/**
* Postconcats the matrix with the specified scale.
* M' = S(sx, sy) * M
*/
public boolean postScale(float sx, float sy) {
Matrix matrix = new Matrix();
matrix.setValues(new float[] {sx, 0, 0, 0, sy, 0, 0, 0, 1});
Matrix current = new Matrix();
current.setValues(MATRIX);
matrix.preConcat(current);
set(matrix);
return true;
}
/**
* Postconcats the matrix with the specified rotation.
* M' = R(degrees, px, py) * M
*/
public boolean postRotate(float degrees, float px, float py) {
double radians = Math.toRadians(degrees);
float sin = (float) Math.sin(radians);
float cos = (float) Math.cos(radians);
Matrix matrix = new Matrix();
matrix.setValues(new float[] {cos, -sin, - px * cos + py * sin + px, sin, cos, - px * sin - py * cos + py, 0, 0, 1});
Matrix current = new Matrix();
current.setValues(MATRIX);
matrix.preConcat(current);
set(matrix);
return true;
}
/**
* Apply this matrix to the array of 2D vectors, and write the transformed
* vectors back into the array.
*
* Note: this method does not apply the translation associated with the matrix.
*/
public void mapVectors(float[] vecs) {
if (vecs == null || vecs.length % 2 != 0) {
return;
}
for (int i = 0; i < vecs.length / 2; i++) {
float[] result = mapVector(vecs[i * 2], vecs[i * 2 + 1]);
vecs[i * 2] = result[0];
vecs[i * 2 + 1] = result[1];
}
}
/**
* Apply this matrix to the array of 2D vectors, and write the transformed
* vectors back into the array.
*
* Note: this method does not apply the translation associated with the matrix.
*/
public float[] mapVector(float x, float y) {
float[] result = new float[] {x, y};
result[0] = MATRIX[MSCALE_X] * x + MATRIX[MSKEW_X] * y;
result[1] = MATRIX[MSKEW_Y] * x + MATRIX[MSCALE_Y] * y;
return result;
}
/** Copy 9 values from the matrix into the array.
*/
public void getValues(float[] values) {
if (values.length < 9) {
throw new ArrayIndexOutOfBoundsException();
}
values[MSCALE_X] = MATRIX[MSCALE_X];
values[MSKEW_X] = MATRIX[MSKEW_X];
values[MTRANS_X] = MATRIX[MTRANS_X];
values[MSKEW_Y] = MATRIX[MSKEW_Y];
values[MSCALE_Y] = MATRIX[MSCALE_Y];
values[MTRANS_Y] = MATRIX[MTRANS_Y];
values[MPERSP_0] = MATRIX[MPERSP_0];
values[MPERSP_1] = MATRIX[MPERSP_1];
values[MPERSP_2] = MATRIX[MPERSP_2];
}
/** Copy 9 values from the array into the matrix.
Depending on the implementation of Matrix, these may be
transformed into 16.16 integers in the Matrix, such that
a subsequent call to getValues() will not yield exactly
the same values.
*/
public void setValues(float[] values) {
if (values.length < 9) {
throw new ArrayIndexOutOfBoundsException();
}
MATRIX[MSCALE_X] = values[MSCALE_X];
MATRIX[MSKEW_X] = values[MSKEW_X];
MATRIX[MTRANS_X] = values[MTRANS_X];
MATRIX[MSKEW_Y] = values[MSKEW_Y];
MATRIX[MSCALE_Y] = values[MSCALE_Y];
MATRIX[MTRANS_Y] = values[MTRANS_Y];
MATRIX[MPERSP_0] = values[MPERSP_0];
MATRIX[MPERSP_1] = values[MPERSP_1];
MATRIX[MPERSP_2] = values[MPERSP_2];
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder(64);
sb.append("Matrix{");
toShortString(sb);
sb.append('}');
return sb.toString();
}
public String toShortString() {
StringBuilder sb = new StringBuilder(64);
toShortString(sb);
return sb.toString();
}
public void toShortString(StringBuilder sb) {
float[] values = new float[9];
getValues(values);
sb.append('[');
sb.append(values[0]); sb.append(", "); sb.append(values[1]); sb.append(", ");
sb.append(values[2]); sb.append("][");
sb.append(values[3]); sb.append(", "); sb.append(values[4]); sb.append(", ");
sb.append(values[5]); sb.append("][");
sb.append(values[6]); sb.append(", "); sb.append(values[7]); sb.append(", ");
sb.append(values[8]); sb.append(']');
}
public void printShortString(PrintWriter pw) {
float[] values = new float[9];
getValues(values);
pw.print('[');
pw.print(values[0]); pw.print(", "); pw.print(values[1]); pw.print(", ");
pw.print(values[2]); pw.print("][");
pw.print(values[3]); pw.print(", "); pw.print(values[4]); pw.print(", ");
pw.print(values[5]); pw.print("][");
pw.print(values[6]); pw.print(", "); pw.print(values[7]); pw.print(", ");
pw.print(values[8]); pw.print(']');
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy