org.apache.commons.imaging.common.RationalNumber Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-imaging Show documentation
Show all versions of commons-imaging Show documentation
Apache Commons Imaging (previously Sanselan) is a pure-Java image library.
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.imaging.common;
import java.text.NumberFormat;
/**
* Rational number, as used by the TIFF image format.
*/
public class RationalNumber extends Number {
private static final long serialVersionUID = -8412262656468158691L;
// int-precision tolerance
private static final double TOLERANCE = 1E-8;
public final int numerator;
public final int divisor;
public RationalNumber(final int numerator, final int divisor) {
this.numerator = numerator;
this.divisor = divisor;
}
static RationalNumber factoryMethod(long n, long d) {
// safer than constructor - handles values outside min/max range.
// also does some simple finding of common denominators.
if (n > Integer.MAX_VALUE || n < Integer.MIN_VALUE
|| d > Integer.MAX_VALUE || d < Integer.MIN_VALUE) {
while ((n > Integer.MAX_VALUE || n < Integer.MIN_VALUE
|| d > Integer.MAX_VALUE || d < Integer.MIN_VALUE)
&& (Math.abs(n) > 1) && (Math.abs(d) > 1)) {
// brutal, inprecise truncation =(
// use the sign-preserving right shift operator.
n >>= 1;
d >>= 1;
}
if (d == 0) {
throw new NumberFormatException("Invalid value, numerator: " + n + ", divisor: " + d);
}
}
final long gcd = gcd(n, d);
d = d / gcd;
n = n / gcd;
return new RationalNumber((int) n, (int) d);
}
/**
* Return the greatest common divisor
*/
private static long gcd(final long a, final long b) {
if (b == 0) {
return a;
} else {
return gcd(b, a % b);
}
}
public RationalNumber negate() {
return new RationalNumber(-numerator, divisor);
}
@Override
public double doubleValue() {
return (double) numerator / (double) divisor;
}
@Override
public float floatValue() {
return (float) numerator / (float) divisor;
}
@Override
public int intValue() {
return numerator / divisor;
}
@Override
public long longValue() {
return (long) numerator / (long) divisor;
}
@Override
public String toString() {
if (divisor == 0) {
return "Invalid rational (" + numerator + "/" + divisor + ")";
}
final NumberFormat nf = NumberFormat.getInstance();
if ((numerator % divisor) == 0) {
return nf.format(numerator / divisor);
}
return numerator + "/" + divisor + " (" + nf.format((double) numerator / divisor) + ")";
}
public String toDisplayString() {
if ((numerator % divisor) == 0) {
return Integer.toString(numerator / divisor);
}
final NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(3);
return nf.format((double) numerator / (double) divisor);
}
private static final class Option {
public final RationalNumber rationalNumber;
public final double error;
private Option(final RationalNumber rationalNumber, final double error) {
this.rationalNumber = rationalNumber;
this.error = error;
}
public static Option factory(final RationalNumber rationalNumber, final double value) {
return new Option(rationalNumber, Math.abs(rationalNumber .doubleValue() - value));
}
@Override
public String toString() {
return rationalNumber.toString();
}
}
/**
* Calculate rational number using successive approximations.
*/
public static RationalNumber valueOf(double value) {
if (value >= Integer.MAX_VALUE) {
return new RationalNumber(Integer.MAX_VALUE, 1);
} else if (value <= -Integer.MAX_VALUE) {
return new RationalNumber(-Integer.MAX_VALUE, 1);
}
boolean negative = false;
if (value < 0) {
negative = true;
value = Math.abs(value);
}
RationalNumber l;
RationalNumber h;
if (value == 0) {
return new RationalNumber(0, 1);
} else if (value >= 1) {
final int approx = (int) value;
if (approx < value) {
l = new RationalNumber(approx, 1);
h = new RationalNumber(approx + 1, 1);
} else {
l = new RationalNumber(approx - 1, 1);
h = new RationalNumber(approx, 1);
}
} else {
final int approx = (int) (1.0 / value);
if ((1.0 / approx) < value) {
l = new RationalNumber(1, approx);
h = new RationalNumber(1, approx - 1);
} else {
l = new RationalNumber(1, approx + 1);
h = new RationalNumber(1, approx);
}
}
Option low = Option.factory(l, value);
Option high = Option.factory(h, value);
Option bestOption = (low.error < high.error) ? low : high;
final int maxIterations = 100; // value is quite high, actually.
// shouldn't matter.
for (int count = 0; bestOption.error > TOLERANCE
&& count < maxIterations; count++) {
final RationalNumber mediant = RationalNumber.factoryMethod(
(long) low.rationalNumber.numerator
+ (long) high.rationalNumber.numerator,
(long) low.rationalNumber.divisor
+ (long) high.rationalNumber.divisor);
final Option mediantOption = Option.factory(mediant, value);
if (value < mediant.doubleValue()) {
if (high.error <= mediantOption.error) {
break;
}
high = mediantOption;
} else {
if (low.error <= mediantOption.error) {
break;
}
low = mediantOption;
}
if (mediantOption.error < bestOption.error) {
bestOption = mediantOption;
}
}
return negative ? bestOption.rationalNumber.negate()
: bestOption.rationalNumber;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy