
eu.monnetproject.translation.jmert.JMertOptimizer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of translation.jmert Show documentation
Show all versions of translation.jmert Show documentation
com.github.monnetproject.translation.jmert OSGi Bundle from the Monnet Project's translation.project project.
The newest version!
/**
* ********************************************************************************
* Copyright (c) 2011, Monnet Project All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met: *
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer. * Redistributions in binary
* form must reproduce the above copyright notice, this list of conditions and
* the following disclaimer in the documentation and/or other materials provided
* with the distribution. * Neither the name of the Monnet Project nor the names
* of its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE MONNET PROJECT BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* *******************************************************************************
*/
package eu.monnetproject.translation.jmert;
import eu.monnetproject.translation.Feature;
import eu.monnetproject.translation.monitor.Messages;
import java.util.*;
/**
*
* @author John McCrae
*/
public class JMertOptimizer implements Optimizer {
@Override
public double[] optimizeFeatures(List> nBests, Feature[] initWeights, int nIters, Set unused) {
double[] wts = toDoubleArray(initWeights);
normalize(wts);
System.arraycopy(toDoubleArray(initWeights), 0, wts, 0, initWeights.length);
for (int n = 0; n < nIters; n++) {
double[] newWts = new double[wts.length];
double[] newerWts = new double[wts.length]; // Newer weights tracks infinite values, without causing problems
System.arraycopy(wts, 0, newWts, 0, wts.length);
System.arraycopy(wts, 0, newerWts, 0, wts.length);
for (int i = 0; i < initWeights.length; i++) {
newerWts[i] = optimizeOneFeature(nBests, i, newWts);
if (newerWts[i] != Double.MAX_VALUE) {
newWts[i] = newerWts[i];
normalize(newWts);
}
}
safeNormalize(newerWts);
newWts = newerWts;
double delta = 0.0;
for (int i = 0; i < initWeights.length; i++) {
delta += Math.abs(newWts[i] - wts[i]);
}
if (delta < 0.001) {
return newWts;
} else {
wts = newWts;
}
}
Messages.warning("JMert hit iteration limit");
return wts;
}
private double[] toDoubleArray(Feature[] initWeights) {
double[] da = new double[initWeights.length];
for (int i = 0; i < initWeights.length; i++) {
da[i] = initWeights[i].score;
}
return da;
}
private void normalize(double[] weights) {
double sum = 0.0;
for (int i = 0; i < weights.length; i++) {
if (weights[i] == Double.MAX_VALUE) {
// instead of summing we simply return 1 for all +Infs
for (int i2 = 0; i2 < weights.length; i2++) {
weights[i2] = weights[i2] == Double.MAX_VALUE ? 1.0 : 0.0;
}
return;
}
sum += Math.abs(weights[i]);
}
for (int i = 0; i < weights.length; i++) {
if (sum == 0) {
weights[i] = 1.0 / weights.length;
} else {
weights[i] /= sum;
}
}
}
public static double INFINITY_EFFECT = 10.0;
private void safeNormalize(double[] weights) {
double sum = 0.0;
for (int i = 0; i < weights.length; i++) {
if (weights[i] == Double.MAX_VALUE) {
weights[i] = INFINITY_EFFECT;
}
sum += Math.abs(weights[i]);
}
for (int i = 0; i < weights.length; i++) {
if (sum == 0) {
weights[i] = 1.0 / weights.length;
} else {
weights[i] /= sum;
}
}
}
public double optimizeOneFeature(List> nBests, final int featureIdx, double[] weights) {
final LinkedList lambdas = new LinkedList();
for (Collection translations : nBests) {
merge(lambdas, lambdas(translations, featureIdx, weights));
}
if (lambdas.isEmpty()) {
// No intersections
return weights[featureIdx];
}
LambdaScore bestL = lambdas.pop();
double bestScore = 0.0;
double score = 0.0;
for (LambdaScore ld : lambdas) {
score += ld.score;
// >= as we prefer to avoid OMEGA boosted scores
if (score > bestScore) {
bestL = ld;
bestScore = score;
}
}
return bestL.lambda;
}
private void merge(List primary, Collection secondary) {
int idx = 0;
for (LambdaScore ld : secondary) {
while (idx < primary.size() && ld.lambda > primary.get(idx).lambda) {
idx++;
}
primary.add(idx, ld);
}
}
// This method follows the convex maximum curve
// Picture like like this given by Koehn eq 9.26 (p267)
// We have lines whose offset is the sum of other features times weights and
// gradient is the current feature value.
// |
// |
// |C
// /|
// / |
// / |
// A______/B__|_
// / |
// We 'start' at A (at x=-Inf) and then follow to B and the C (and finally head to y=+Inf)
// The return value is then B and C where lambda is the x coord of B/C and delta is change
// in eval metric at that point.
private List lambdas(Collection translations, final int featureIdx, double[] weights) {
// Firslty we find the extreme values
final ArrayList translationStack = new ArrayList(translations);
JMertTranslation minTranslation = null;
double maxGradient = -Double.MAX_VALUE, minGradient = Double.MAX_VALUE;
double bestOffset = -Double.MAX_VALUE;
for (JMertTranslation translation : translations) {
double gradient = translation.features[featureIdx].score;
if (gradient > maxGradient) {
maxGradient = gradient;
}
// We also set the translation offset
translation.offset = 0.0;
for (int j = 0; j < translation.features.length; j++) {
if (j != featureIdx) {
translation.offset += weights[j] * translation.features[j].score;
}
}
if (gradient < minGradient
|| // Select highest offset
(gradient == minGradient && translation.offset > bestOffset)) {
minGradient = gradient;
minTranslation = translation;
bestOffset = translation.offset;
}
}
double gradient = minGradient;
double offset = minTranslation.offset;
double lambda = -Double.MAX_VALUE;
translationStack.remove(minTranslation);
JMertTranslation prevTranslation = minTranslation;
JMertTranslation prevPrevTranslation = minTranslation;
final ArrayList lambdaScores = new ArrayList(translations.size());
while (gradient < maxGradient) {
JMertTranslation nextTranslation = null;
double bestLambda = Double.MAX_VALUE;
double bestLambdaGrad = Double.NaN;
// We move up to the next lambda value, and prune all translations
// whose gradient is lower than the last value (and hence cannot intercept)
final Iterator translationStackIterator = translationStack.iterator();
while (translationStackIterator.hasNext()) {
final JMertTranslation candidate = translationStackIterator.next();
if (candidate.features[featureIdx].score <= gradient) {
translationStackIterator.remove();
continue;
}
if (candidate.features[featureIdx].score == gradient) {
continue;
}
double nextLambda = (offset - candidate.offset)
/ (candidate.features[featureIdx].score - gradient);
if (nextLambda > lambda && (nextLambda < bestLambda
|| // Complex condition if intersections collide (common at lambda = 0)
(nextLambda == bestLambda && candidate.features[featureIdx].score > bestLambdaGrad))) {
bestLambda = nextLambda;
bestLambdaGrad = candidate.features[featureIdx].score;
nextTranslation = candidate;
}
}
// This should never happen as either the current lambda is not at
// maximal gradient, so the maximal gradient line will intersect
// before +Inf
if (nextTranslation == null) {
nextTranslation = translationStack.get(0);
gradient = nextTranslation.features[featureIdx].score;
offset = nextTranslation.offset;
System.err.println("X(" + gradient + "," + offset + ")=" + bestLambda);
throw new RuntimeException("Math error, Rules of universe changed? Nah... likely just a bug");
}
// Add to lambda stack
lambdaScores.add(new LambdaScore(bestLambda, prevTranslation.score - prevPrevTranslation.score));
gradient = nextTranslation.features[featureIdx].score;
offset = nextTranslation.offset;
lambda = bestLambda;
translationStack.remove(nextTranslation);
prevPrevTranslation = prevTranslation;
prevTranslation = nextTranslation;
}
lambdaScores.add(new LambdaScore(Double.MAX_VALUE, prevTranslation.score - prevPrevTranslation.score));
return lambdaScores;
}
private static class LambdaScore {
public double lambda;
public double score;
public LambdaScore(double lambda, double score) {
this.lambda = lambda;
this.score = score;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy