
eu.monnetproject.translation.jmert.SVMRank Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of translation.jmert Show documentation
Show all versions of translation.jmert Show documentation
com.github.monnetproject.translation.jmert OSGi Bundle from the Monnet Project's translation.project project.
The newest version!
/**
* *******************************************************************************
* Copyright (c) 2011, Monnet Project All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met: *
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer. * Redistributions in binary
* form must reproduce the above copyright notice, this list of conditions and
* the following disclaimer in the documentation and/or other materials provided
* with the distribution. * Neither the name of the Monnet Project nor the names
* of its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE MONNET PROJECT BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* *******************************************************************************
*/
package eu.monnetproject.translation.jmert;
import java.util.Arrays;
import org.apache.commons.math.linear.Array2DRowRealMatrix;
import org.apache.commons.math.linear.LUDecompositionImpl;
import org.apache.commons.math.stat.regression.OLSMultipleLinearRegression;
/**
* Derived from Olivier Chappelle's Matlab implementation. Based on "Efficient
* algorithms for Ranking with SVMs", Chappelle & Keerthi (2009).
*
* @author John McCrae
*/
public class SVMRank {
// Configuration variables
public int maxNewtonIterations = 10;
public double prec = 1e-4;
public double minresPrecision = 1e-3;
public int minResIterations = 20;
// Problem space variables
double[] w; // d
double C; // p
double[] out; // p
double[] step; // d
double[][] A; // pxn
int[][] spA; // px2
double[][] X; // nxd
int d;
int p;
int n;
int[] sv; // p
int svN; // < p
double[] grad; // d
double obj;
/**
* Create a Ranking SVM problem
* @param X The vectors
* @param A The matrix where {@code A[i][j] = 1} iff {@code rank(i) > rank(j)} and
* {@code A[i][j] = -1} iff {@code rank(i) < rank(j)}
* @param C The loss parameter
*/
public SVMRank(double[][] X, double[][] A, double C) {
this.X = X;
this.A = A;
this.C = C;
}
/**
* Create a Ranking SVM problem
* @param X The vectors
* @param A A set of vectors where {@code spA[_] = { i, j } } iff {@code rank(i) > rank(j) }
* @param C The loss parameter
*/
public SVMRank(double[][] X, int[][] spA, double C) {
this.X = X;
this.spA = spA;
this.C = C;
}
public double[] solve() {
if (X.length == 0) {
return new double[0];
}
d = X[0].length;
n = X.length;
final int k = Math.min(d, minResIterations);
// Min Residual method has complexity O(k^2nd + pd)
// LU method has complexity O(d^3 + pd)
return solve(k * k * n < d * d);
}
public double[] solve(boolean minResidualMethod) {
d = X[0].length;
n = X.length;
if (spA != null) {
p = spA.length;
} else {
p = A.length;
}
if (p == 0) {
return new double[d];
}
w = new double[d];
Arrays.fill(w, 1.0);
sv = new int[p];
svN = 0;
grad = new double[d];
x0 = new double[d];
step = new double[d];
int iter = 0;
out = new double[p];
// out = 1 - A*(X*w)
for (int i = 0; i < p; i++) {
out[i] = 1;
for (int j = 0; j < d; j++) {
if (spA != null) {
out[i] -= (X[spA[i][0]][j] - X[spA[i][1]][j]) * w[j];
} else {
for (int k = 0; k < n; k++) {
out[i] -= A[i][k] * X[k][j] * w[j];
}
}
}
}
//while 1
while (true) {
// iter = iter + 1;
iter++;
if (iter > maxNewtonIterations) {
System.err.println("Maximum number of Newton steps reached.Try larger lambda");
break;
}
//[obj, grad, sv] = obj_fun_linear(w,C,out);
objFunLinear();
if (minResidualMethod) {
// [step, foo, relres] = minres(@hess_vect_mult, -grad,...
// opt.cg_prec,opt.cg_it,[],[],[],sv,C);
// minres(A,b,tolerance,itMax,...)
gmresHessMult();
} else {
luHessSolve();
}
if(allZero(step)) {
break;
}
// [t,out] = line_search_linear(w,step,out,C);
double t = lineSearchLinear();
// w = w + t*step;
for (int i = 0; i < d; i++) {
w[i] = w[i] + t * step[i];
}
// if -step'*grad < opt.prec * obj
// % Stop when the Newton decrement is small enough
// break;
if (-1.0 * innerProduct(step, grad) < prec * obj) {
break;
}
}
return w;
}
private void luHessSolve() {
// Xsv = A(sv,:)*X;
double[][] Xsv = new double[svN][d];
for (int i = 0; i < svN; i++) {
Xsv[i] = new double[d];
if (spA != null) {
for (int k = 0; k < d; k++) {
Xsv[i][k] += X[spA[sv[i]][0]][k] - X[spA[sv[i]][1]][k];
}
} else {
for (int j = 0; j < n; j++) {
for (int k = 0; k < d; k++) {
Xsv[i][k] += A[sv[i]][j] * X[j][k];
}
}
}
}
double[][] hess = new double[d][d];
//hess = eye(d) + Xsv'*(Xsv.*repmat(C(sv),1,d)); % Hessian
for (int i = 0; i < d; i++) {
hess[i][i] = 1;
for (int j = 0; j < svN; j++) {
for (int k = 0; k < d; k++) {
hess[i][k] += Xsv[j][i] * Xsv[j][k] * C;
}
}
}
//step = - hess \ grad; % Newton direction NB -1 * inv(A) * grad
Arrays.fill(step, 0);
final double[][] invHess = new LUDecompositionImpl(new Array2DRowRealMatrix(hess)).getSolver().getInverse().getData();
for (int i = 0; i < d; i++) {
for (int j = 0; j < d; j++) {
step[i] += -1.0 * invHess[i][j] * grad[j];
}
}
}
private void objFunLinear() {
//out = max(0,out);
for (int i = 0; i < out.length; i++) {
out[i] = Math.max(0, out[i]);
}
//obj = sum(C.*out.^2)/2 + w'*w/2; % L2 penalization of the errors
obj = 0.0;
for (int i = 0; i < p; i++) {
obj += (C * out[i] * out[i]) / 2.0;
}
for (int i = 0; i < d; i++) {
obj += w[i] * w[i] / 2.0;
}
//grad = w - (((C.*out)'*A)*X)'; % Gradient
for (int i = 0; i < d; i++) {
grad[i] = w[i];
for (int j = 0; j < p; j++) {
if (spA != null) {
grad[i] -= C * out[j] * (X[spA[j][0]][i] - X[spA[j][1]][i]);
} else {
for (int k = 0; k < n; k++) {
grad[i] -= C * out[j] * A[j][k] * X[k][i];
}
}
}
}
//sv = out>0;
svN = 0;
for (int i = 0; i < p; i++) {
if (out[i] > 0) {
sv[svN++] = i;
}
}
}
private double lineSearchLinear() {
int[] lsv = new int[p];
int lsvN;
// t = 0;
double t = 0;
// Precompute some dots products
// Xd = A*(X*step);
double[] Xd = new double[p];
for (int i = 0; i < p; i++) {
for (int k = 0; k < d; k++) {
if (spA != null) {
Xd[i] += (X[spA[i][0]][k] - X[spA[i][1]][k]) * step[k];
} else {
for (int j = 0; j < n; j++) {
Xd[i] += A[i][j] * X[j][k] * step[k];
}
}
}
}
// wd = w'*step;
double wd = 0.0;
for (int i = 0; i < d; i++) {
wd += w[i] * step[i];
}
// dd = step'*step;
double dd = 0.0;
for (int i = 0; i < d; i++) {
dd += step[i] * step[i];
}
// while 1
while (true) {
// out2 = out - t*Xd; % The new outputs after a step of length t
double[] out2 = new double[p];
System.arraycopy(out, 0, out2, 0, p);
for (int i = 0; i < p; i++) {
out2[i] = out[i] - t * Xd[i];
}
// sv = find(out2>0);
lsvN = 0;
for (int i = 0; i < p; i++) {
if (out2[i] > 0) {
lsv[lsvN++] = i;
}
}
// g = wd + t*dd - (C(sv).*out2(sv))'*Xd(sv); % The gradient (along the line)
double g = wd + t * dd;
for (int i = 0; i < lsvN; i++) {
g -= C * out2[lsv[i]] * Xd[lsv[i]];
}
// h = dd + Xd(sv)'*(Xd(sv).*C(sv)); % The second derivative (along the line)
double h = dd;
for (int i = 0; i < lsvN; i++) {
h += Xd[lsv[i]] * Xd[lsv[i]] * C;
}
// t = t - g/h; % Take the 1D Newton step. Note that if d was an exact Newton
t = t - g / h;
// % direction, t is 1 after the first iteration.
// if g^2/h < 1e-10, break; end;
if (g * g / h < 1e-10) {
// out = out2;
out = out2;
return t;
}
// end;
}
}
public static double[] hessVectMult(double[][] X, int[][] spA, double[] w, int[] sv, int svN, double C) {
int d = w.length;
//int n = X.length;
// y = w
double[] y = new double[d];
System.arraycopy(w, 0, y, 0, d);
// z = (C.*sv).*(A*(X*w)); % Computing X(sv,:)*x takes more time in Matlab :-(
double[] z = new double[svN];
for (int i2 = 0; i2 < svN; i2++) {
int i = sv[i2];
for (int j = 0; j < d; j++) {
//if (spA != null) {
z[i2] += (X[spA[i][0]][j] - X[spA[i][1]][j]) * w[j];
//} else {
// for (int k = 0; k < n; k++) {
// z[i2] += A[i][k] * X[k][j] * w[j];
// }
//}
}
z[i2] *= C;
}
// y = y + ((z'*A)*X)';
for (int i = 0; i < d; i++) {
for (int j2 = 0; j2 < svN; j2++) {
int j = sv[j2];
//if(spA != null) {
y[i] += 2 * (X[spA[j][0]][i] - X[spA[j][1]][i]) * z[j2];
//} else {
// for (int k = 0; k < n; k++) {
// y[i] += A[j][k] * X[k][i] * z[j2];
// }
//}
}
}
return y;
}
public static double[] hessVectMult(double[][] X, double[][] A, double[] w, int[] sv, int svN, double C) {
int d = w.length;
int n = X.length;
// y = w
double[] y = new double[d];
System.arraycopy(w, 0, y, 0, d);
// z = (C.*sv).*(A*(X*w)); % Computing X(sv,:)*x takes more time in Matlab :-(
double[] z = new double[svN];
for (int i2 = 0; i2 < svN; i2++) {
int i = sv[i2];
for (int j = 0; j < d; j++) {
for (int k = 0; k < n; k++) {
z[i2] += A[i][k] * X[k][j] * w[j];
}
}
z[i2] *= C;
}
// y = y + ((z'*A)*X)';
for (int i = 0; i < d; i++) {
for (int j2 = 0; j2 < svN; j2++) {
int j = sv[j2];
for (int k = 0; k < n; k++) {
y[i] += 2 * A[j][k] * X[k][i] * z[j2];
}
}
}
return y;
}
private double innerProduct(double[] step, double[] grad) {
double ip = 0.0;
for (int i = 0; i < step.length; i++) {
ip += step[i] * grad[i];
}
return ip;
}
public static double[] gmres(double[][] A, double[] f, double[] x0, int k) {
// r0 <- f - A %*% x0
int n = f.length;
int m = x0.length;
double[] r0 = new double[n];
for (int i = 0; i < n; i++) {
r0[i] = f[i];
for (int j = 0; j < m; j++) {
r0[i] -= A[i][j] * x0[j];
}
}
// v <- matrix(0,k+1,ncol(A))
double[][] v = new double[k + 1][n];
// v[1,] <- r0 / sqrt(sum(r0*r0))
v[0] = r0;
double sumSqR0 = 0.0;
for (int i = 0; i < n; i++) {
sumSqR0 += r0[i] * r0[i];
}
sumSqR0 = Math.sqrt(sumSqR0);
for (int i = 0; i < n; i++) {
v[0][i] /= sumSqR0;
}
// h <- matrix(0,k+1,k)
double[][] h = new double[k + 1][k];
// for(j in 1:k) {
for (int j = 0; j < k; j++) {
// for(i in 1:j) {
for (int i = 0; i <= j; i++) {
// h[i,j] <- t(A %*% v[j,]) %*% v[i,]
h[i][j] = 0;
for (int l = 0; l < n; l++) {
for (int l2 = 0; l2 < n; l2++) {
h[i][j] += v[j][l] * A[l2][l] * v[l2][i];
}
}
// }
}
// v[j+1,] <- A %*% v[j,]
for (int i = 0; i < n; i++) {
for (int l = 0; l < n; l++) {
v[j + 1][i] += A[i][l] * v[j][l];
}
}
// for(i in 1:j) {
for (int i = 0; i <= j; i++) {
// v[j+1,] <- v[j+1,] - h[i,j] * v[i,]
for (int l = 0; l < n; l++) {
v[j + 1][l] -= h[i][j] * v[i][l];
}
// }
}
// h[j+1,j] <- sqrt(sum(v[j+1,]*v[j+1,]))
h[j + 1][j] = 0;
for (int i = 0; i < n; i++) {
h[j + 1][j] += v[j + 1][i] * v[j + 1][i];
}
h[j + 1][j] = Math.sqrt(h[j + 1][j]);
// v[j+1,] <- v[j+1,] / h[j+1,j]
for (int i = 0; i < n; i++) {
v[j + 1][i] /= h[j + 1][j];
}
// }
}
// beta <- c(sqrt(sum(r0*r0)),rep(0,k-1))
double[] beta = new double[k + 1];
beta[0] = sumSqR0;
// y is least squares solution to ||beta - Hy||
final OLSMultipleLinearRegression lr = new OLSMultipleLinearRegression();
lr.newSampleData(beta, h);
final double[] y = lr.estimateRegressionParameters();
// NB y = [intercept,x0,x1,...,xn]
// x0 + v[1:k,] %*% y
double[] answer = new double[n];
for (int i = 0; i < n; i++) {
answer[i] = x0[i];
for (int j = 0; j < k; j++) {
answer[i] += v[j][i] * y[j + 1];
}
}
return answer;
}
double[] x0;
public void gmresHessMult() {
// r0 <- f - A %*% x0
double[] r0 = new double[d];
double[] r0Tmp = spA != null ? hessVectMult(X, spA, x0, sv, svN, C) : hessVectMult(X, A, x0, sv, svN, C);
for (int i = 0; i < d; i++) {
r0[i] = -grad[i] - r0Tmp[i];
}
final int k = Math.min(d, minResIterations);
// v <- matrix(0,k+1,ncol(A))
double[][] v = new double[k + 1][d];
// v[1,] <- r0 / sqrt(sum(r0*r0))
v[0] = r0;
double sumSqR0 = 0.0;
for (int i = 0; i < d; i++) {
sumSqR0 += r0[i] * r0[i];
}
sumSqR0 = Math.sqrt(sumSqR0);
for (int i = 0; i < d; i++) {
v[0][i] /= sumSqR0;
}
// h <- matrix(0,k+1,k)
double[][] h = new double[k + 1][k];
// for(j in 1:k) {
for (int j = 0; j < k; j++) {
// for(i in 1:j) {
for (int i = 0; i <= j; i++) {
// h[i,j] <- t(A %*% v[j,]) %*% v[i,]
final double[] Avi = spA != null ? hessVectMult(X, spA, v[i], sv, svN, C) : hessVectMult(X, A, v[i], sv, svN, C);
for (int l = 0; l < d; l++) {
h[i][j] += v[j][l] * Avi[l];
}
// }
}
// v[j+1,] <- A %*% v[j,]
v[j + 1] = spA != null ? hessVectMult(X, spA, v[j], sv, svN, C) : hessVectMult(X,A,v[j],sv,svN,C);
// for(i in 1:j) {
for (int i = 0; i <= j; i++) {
// v[j+1,] <- v[j+1,] - h[i,j] * v[i,]
for (int l = 0; l < d; l++) {
v[j + 1][l] -= h[i][j] * v[i][l];
}
// }
}
// h[j+1,j] <- sqrt(sum(v[j+1,]*v[j+1,]))
h[j + 1][j] = 0;
for (int i = 0; i < d; i++) {
h[j + 1][j] += v[j + 1][i] * v[j + 1][i];
}
h[j + 1][j] = Math.sqrt(h[j + 1][j]);
// v[j+1,] <- v[j+1,] / h[j+1,j]
for (int i = 0; i < d; i++) {
v[j + 1][i] /= h[j + 1][j];
}
// }
}
// beta <- c(sqrt(sum(r0*r0)),rep(0,k-1))
double[] beta = new double[k + 1];
beta[0] = sumSqR0;
// y is least squares solution to ||beta - Hy||
final OLSMultipleLinearRegression lr = new OLSMultipleLinearRegression();
lr.newSampleData(beta, h);
final double[] y = lr.estimateRegressionParameters();
// NB y = [intercept,x0,x1,...,xn]
// x0 + v[1:k,] %*% y
for (int i = 0; i < d; i++) {
step[i] = x0[i];
for (int j = 0; j < k; j++) {
step[i] += v[j][i] * y[j + 1];
}
}
}
private boolean allZero(double[] step) {
for(int i = 0; i < step.length; i++) {
if(step[i] != 0.0) {
return false;
}
}
return true;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy