org.simmetrics.metrics.EuclideanDistance Maven / Gradle / Ivy
/*
* SimMetrics - SimMetrics is a java library of Similarity or Distance Metrics,
* e.g. Levenshtein Distance, that provide float based similarity measures
* between String Data. All metrics return consistent measures rather than
* unbounded similarity scores.
*
* Copyright (C) 2014 SimMetrics authors
*
* This file is part of SimMetrics. This program is free software: you can
* redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* SimMetrics. If not, see .
*/
package org.simmetrics.metrics;
import static java.util.Collections.frequency;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import org.simmetrics.ListMetric;
import static java.lang.Math.sqrt;
/**
* Euclidean Distance algorithm providing a similarity measure between two lists
* using the vector space of combined terms as the dimensions.
*
*
* This class is immutable and thread-safe.
* @param
* type of the token
*
*/
public class EuclideanDistance implements ListMetric {
@Override
public float compare(List a, List b) {
if (a.isEmpty() && b.isEmpty()) {
return 1.0f;
}
if (a.isEmpty() || b.isEmpty()) {
return 0.0f;
}
float totalPossible = (float) sqrt((a.size() * a.size()) + (b.size() * b.size()));
return (totalPossible - distance(a, b)) / totalPossible;
}
private static float distance(final List a, final List b) {
final Set all = new HashSet<>();
all.addAll(a);
all.addAll(b);
float totalDistance = 0.0f;
for (final T token : all) {
int frequencyInA = frequency(a, token);
int frequencyInB = frequency(b, token);
totalDistance += ((frequencyInA - frequencyInB) * (frequencyInA - frequencyInB));
}
return (float) sqrt(totalDistance);
}
@Override
public String toString() {
return "EuclideanDistance";
}
}