All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.simmetrics.metrics.SmithWaterman Maven / Gradle / Ivy

There is a newer version: 4.1.1
Show newest version
/*
 * SimMetrics - SimMetrics is a java library of Similarity or Distance Metrics,
 * e.g. Levenshtein Distance, that provide float based similarity measures
 * between String Data. All metrics return consistent measures rather than
 * unbounded similarity scores.
 * 
 * Copyright (C) 2014 SimMetrics authors
 * 
 * This file is part of SimMetrics. This program is free software: you can
 * redistribute it and/or modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 * 
 * You should have received a copy of the GNU General Public License along with
 * SimMetrics. If not, see .
 */

package org.simmetrics.metrics;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static java.lang.Math.max;
import static java.lang.Math.min;
import static org.simmetrics.utils.Math.max3;

import org.simmetrics.StringMetric;
import org.simmetrics.metrics.functions.AffineGap;
import org.simmetrics.metrics.functions.Gap;
import org.simmetrics.metrics.functions.MatchMismatch;
import org.simmetrics.metrics.functions.Substitution;

/**
 * Smith-Waterman algorithm providing a similarity measure between two strings.
 * 
 * 

* Implementation uses implementation by Smith and Waterman. This implementation * uses quadratic space and cubic time. *

* This class is immutable and thread-safe if its substitution and gap functions are. * * * @see NeedlemanWunch * @see SmithWatermanGotoh * @see Wikipedia - Smith-Waterman algorithm */ public class SmithWaterman implements StringMetric { private final Gap gap; private final Substitution substitution; private final int windowSize; /** * Constructs a new Smith Waterman metric. Uses an affine gap of * -5.0 - gapLength a -3.0 substitution penalty * for mismatches, 5.0 for matches. * */ public SmithWaterman() { this(new AffineGap(-5.0f, -1.0f), new MatchMismatch(5.0f, -3.0f), Integer.MAX_VALUE); } /** * Constructs a new Smith Waterman metric. * * @param gap * a gap function to score gaps by * @param substitution * a substitution function to score substitutions by * @param windowSize * a non-negative window in which */ public SmithWaterman(Gap gap, Substitution substitution, int windowSize) { checkNotNull(gap); checkNotNull(substitution); checkArgument(windowSize >= 0); this.gap = gap; this.substitution = substitution; this.windowSize = windowSize; } @Override public float compare(String a, String b) { if (a.isEmpty() && b.isEmpty()) { return 1.0f; } if (a.isEmpty() || b.isEmpty()) { return 0.0f; } float maxDistance = min(a.length(), b.length()) * max(substitution.max(), gap.min()); return smithWatermanGotoh(a, b) / maxDistance; } private float smithWatermanGotoh(String a, String b) { final int n = a.length(); final int m = b.length(); final float[][] d = new float[n][m]; // Initialize corner float max = d[0][0] = max(0, substitution.compare(a, 0, b, 0)); // Initialize edge for (int i = 0; i < n; i++) { // Find most optimal deletion float maxGapCost = 0; for (int k = max(1, i - windowSize); k < i; k++) { maxGapCost = max(maxGapCost, d[i - k][0] + gap.value(i - k, i)); } d[i][0] = max3(0, maxGapCost, substitution.compare(a, i, b, 0)); max = max(max, d[i][0]); } // Initialize edge for (int j = 1; j < m; j++) { // Find most optimal insertion float maxGapCost = 0; for (int k = max(1, j - windowSize); k < j; k++) { maxGapCost = max(maxGapCost, d[0][j - k] + gap.value(j - k, j)); } d[0][j] = max3(0, maxGapCost, substitution.compare(a, 0, b, j)); max = max(max, d[0][j]); } // Build matrix for (int i = 1; i < n; i++) { for (int j = 1; j < m; j++) { float maxGapCost = 0; // Find most optimal deletion for (int k = max(1, i - windowSize); k < i; k++) { maxGapCost = max(maxGapCost, d[i - k][j] + gap.value(i - k, i)); } // Find most optimal insertion for (int k = max(1, j - windowSize); k < j; k++) { maxGapCost = max(maxGapCost, d[i][j - k] + gap.value(j - k, j)); } // Find most optimal of insertion, deletion and substitution d[i][j] = max3(0, maxGapCost, d[i - 1][j - 1] + substitution.compare(a, i, b, j)); max = max(max, d[i][j]); } } return max; } @Override public String toString() { return "SmithWatermanGotoh [gap=" + gap + ", substitution=" + substitution + ", windowSize=" + windowSize + "]"; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy