All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.simmetrics.metrics.EuclideanDistance Maven / Gradle / Ivy

/*
 * #%L
 * Simmetrics Core
 * %%
 * Copyright (C) 2014 - 2015 Simmetrics Authors
 * %%
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * #L%
 */

package org.simmetrics.metrics;

import static com.google.common.collect.Multisets.union;
import static java.lang.Math.sqrt;

import org.simmetrics.MultisetDistance;
import org.simmetrics.MultisetMetric;

import com.google.common.collect.Multiset;

/**
 * Calculates the Euclidean distance and similarity over two multisets.
 * 

* * similarity(a,b) = 1 - distance(a,b) / √(∣a∣² + ∣b∣²) * distance(a,b) = ∣∣a - b∣∣ * *

* *

* This class is immutable and thread-safe. * * @see Wikipedia - Euclidean Distance * @param * type of the token * */ public final class EuclideanDistance implements MultisetMetric, MultisetDistance { @Override public float compare(Multiset a, Multiset b) { if (a.isEmpty() && b.isEmpty()) { return 1.0f; } float maxDistance = (float) sqrt((a.size() * a.size()) + (b.size() * b.size())); return 1.0f - distance(a, b) / maxDistance; } @Override public float distance(Multiset a, Multiset b) { // Lager set first for performance improvement. // See: MultisetUnionSize benchmark if(a.size() < b.size()){ final Multiset swap = a; a = b; b = swap; } float distance = 0.0f; for (T token : union(a, b).elementSet()) { float frequencyInA = a.count(token); float frequencyInB = b.count(token); distance += ((frequencyInA - frequencyInB) * (frequencyInA - frequencyInB)); } return (float) sqrt(distance); } @Override public String toString() { return "EuclideanDistance"; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy