All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.simmetrics.metrics.MongeElkan Maven / Gradle / Ivy

There is a newer version: 4.1.1
Show newest version
/*
 * #%L
 * Simmetrics Core
 * %%
 * Copyright (C) 2014 - 2015 Simmetrics Authors
 * %%
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 * 
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 * #L%
 */

package org.simmetrics.metrics;

import static com.google.common.base.Preconditions.checkArgument;
import static java.lang.Math.max;
import static java.lang.Math.sqrt;

import java.util.List;

import org.simmetrics.ListMetric;
import org.simmetrics.StringMetric;

/**
 * Calculates the normalized Monge Elkan distance (similarity) over two strings.
 * The normalized Monge Elkan distance is used because the the unnormalized
 * distance is not symmetric.
 * 

* * similarity(a,b) = sqrt(monge-elkan(a,b) * monge-elkan(b,a)) * monge-elkan(a,b) = average( for s in a | max( for q in b | metric(s,q)) * *

*

* This class is immutable and thread-safe. * */ public final class MongeElkan implements ListMetric { private final StringMetric metric; /** * Constructs a MongeElkan metric with metric. * * @param metric * metric to use */ public MongeElkan(final StringMetric metric) { this.metric = metric; } @Override public float compare(List a, List b) { checkArgument(!a.contains(null), "a may not not contain null"); checkArgument(!b.contains(null), "b may not not contain null"); if (a.isEmpty() && b.isEmpty()) { return 1.0f; } if (a.isEmpty() || b.isEmpty()) { return 0.0f; } // calculates normalized_similarity(a,b) return (float) sqrt(mongeElkan(a, b) * mongeElkan(b, a)); } private float mongeElkan(List a, List b) { // calculates average( for s in a | max( for q in b | metric(s,q)) float sum = 0.0f; for (String s : a) { float max = 0.0f; for (String q : b) { max = max(max, metric.compare(s, q)); } sum += max; } return sum / a.size(); } @Override public String toString() { return "MongeElkan [metric=" + metric + "]"; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy