All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.simmetrics.metrics.NeedlemanWunch Maven / Gradle / Ivy

There is a newer version: 4.1.1
Show newest version
/*
 * #%L
 * Simmetrics Core
 * %%
 * Copyright (C) 2014 - 2015 Simmetrics Authors
 * %%
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 * 
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 * #L%
 */

package org.simmetrics.metrics;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.System.arraycopy;
import static org.simmetrics.metrics.Math.min;

import java.util.Objects;

import org.simmetrics.StringMetric;
import org.simmetrics.metrics.functions.MatchMismatch;
import org.simmetrics.metrics.functions.Substitution;

/**
 * Applies the Needleman-Wunsch algorithm to calculate the similarity
 * between two strings. This implementation uses linear space.
 * 

* This class is immutable and thread-safe if its substitution function is. * * @see SmithWatermanGotoh * @see SmithWaterman * @see Wikipedia * - Needleman-Wunsch algorithm */ public final class NeedlemanWunch implements StringMetric { private static final Substitution MATCH_0_MISMATCH_1 = new MatchMismatch( 0.0f, -1.0f); private final Substitution substitution; private final float gapValue; /** * Constructs a new Needleman-Wunch metric. Uses an gap of -2.0 * a -1.0 substitution penalty for mismatches, 0 * for matches. * */ public NeedlemanWunch() { this(-2.0f, MATCH_0_MISMATCH_1); } /** * Constructs a new Needleman-Wunch metric. * * @param gapValue * a non-positive penalty for gaps * @param substitution * a substitution function for mismatched characters */ public NeedlemanWunch(float gapValue, Substitution substitution) { checkArgument(gapValue <= 0.0f); checkNotNull(substitution); this.gapValue = gapValue; this.substitution = substitution; } @Override public float compare(String a, String b) { if (a.isEmpty() && b.isEmpty()) { return 1.0f; } float maxDistance = max(a.length(), b.length()) * max(substitution.max(), gapValue); float minDistance = max(a.length(), b.length()) * min(substitution.min(), gapValue); return (-needlemanWunch(a, b) - minDistance) / (maxDistance - minDistance); } private float needlemanWunch(final String s, final String t) { if (Objects.equals(s, t)) { return 0; } if (s.isEmpty()) { return -gapValue * t.length(); } if (t.isEmpty()) { return -gapValue * s.length(); } final int n = s.length(); final int m = t.length(); // We're only interested in the alignment penalty between s and t // and not their actual alignment. This means we don't have to backtrack // through the n-by-m matrix and can safe some space by reusing v0 for // row i-1. final float[] v0 = new float[m + 1]; final float[] v1 = new float[m + 1]; for (int j = 0; j < v0.length; j++) { v0[j] = j; } for (int i = 1; i <= n; i++) { v1[0] = i; for (int j = 1; j <= m; j++) { v1[j] = min( v0[j] - gapValue, v1[j - 1] - gapValue, v0[j - 1] - substitution.compare(s, i - 1, t, j - 1)); } // Copy rather then swap because when calculating // v1[j] elements to the left of j are referenced arraycopy(v1, 0, v0, 0, v0.length); } return v1[m]; } @Override public String toString() { return "NeedlemanWunch [costFunction=" + substitution + ", gapCost=" + gapValue + "]"; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy