com.github.os72.protobuf351.CodedOutputStream Maven / Gradle / Ivy
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package com.github.os72.protobuf351;
import static com.github.os72.protobuf351.WireFormat.FIXED32_SIZE;
import static com.github.os72.protobuf351.WireFormat.FIXED64_SIZE;
import static com.github.os72.protobuf351.WireFormat.MAX_VARINT_SIZE;
import static java.lang.Math.max;
import com.github.os72.protobuf351.Utf8.UnpairedSurrogateException;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.BufferOverflowException;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
* Encodes and writes protocol message fields.
*
* This class contains two kinds of methods: methods that write specific
* protocol message constructs and field types (e.g. {@link #writeTag} and
* {@link #writeInt32}) and methods that write low-level values (e.g.
* {@link #writeRawVarint32} and {@link #writeRawBytes}). If you are
* writing encoded protocol messages, you should use the former methods, but if
* you are writing some other format of your own design, use the latter.
*
*
This class is totally unsynchronized.
*/
public abstract class CodedOutputStream extends ByteOutput {
private static final Logger logger = Logger.getLogger(CodedOutputStream.class.getName());
private static final boolean HAS_UNSAFE_ARRAY_OPERATIONS = UnsafeUtil.hasUnsafeArrayOperations();
/**
* @deprecated Use {@link #computeFixed32SizeNoTag(int)} instead.
*/
@Deprecated
public static final int LITTLE_ENDIAN_32_SIZE = FIXED32_SIZE;
/**
* The buffer size used in {@link #newInstance(OutputStream)}.
*/
public static final int DEFAULT_BUFFER_SIZE = 4096;
/**
* Returns the buffer size to efficiently write dataLength bytes to this
* CodedOutputStream. Used by AbstractMessageLite.
*
* @return the buffer size to efficiently write dataLength bytes to this
* CodedOutputStream.
*/
static int computePreferredBufferSize(int dataLength) {
if (dataLength > DEFAULT_BUFFER_SIZE) {
return DEFAULT_BUFFER_SIZE;
}
return dataLength;
}
/**
* Create a new {@code CodedOutputStream} wrapping the given {@code OutputStream}.
*
*
NOTE: The provided {@link OutputStream} MUST NOT retain access or
* modify the provided byte arrays. Doing so may result in corrupted data, which would be
* difficult to debug.
*/
public static CodedOutputStream newInstance(final OutputStream output) {
return newInstance(output, DEFAULT_BUFFER_SIZE);
}
/**
* Create a new {@code CodedOutputStream} wrapping the given {@code OutputStream} with a given
* buffer size.
*
*
NOTE: The provided {@link OutputStream} MUST NOT retain access or
* modify the provided byte arrays. Doing so may result in corrupted data, which would be
* difficult to debug.
*/
public static CodedOutputStream newInstance(final OutputStream output, final int bufferSize) {
return new OutputStreamEncoder(output, bufferSize);
}
/**
* Create a new {@code CodedOutputStream} that writes directly to the given
* byte array. If more bytes are written than fit in the array,
* {@link OutOfSpaceException} will be thrown. Writing directly to a flat
* array is faster than writing to an {@code OutputStream}. See also
* {@link ByteString#newCodedBuilder}.
*/
public static CodedOutputStream newInstance(final byte[] flatArray) {
return newInstance(flatArray, 0, flatArray.length);
}
/**
* Create a new {@code CodedOutputStream} that writes directly to the given
* byte array slice. If more bytes are written than fit in the slice,
* {@link OutOfSpaceException} will be thrown. Writing directly to a flat
* array is faster than writing to an {@code OutputStream}. See also
* {@link ByteString#newCodedBuilder}.
*/
public static CodedOutputStream newInstance(
final byte[] flatArray, final int offset, final int length) {
return new ArrayEncoder(flatArray, offset, length);
}
/** Create a new {@code CodedOutputStream} that writes to the given {@link ByteBuffer}. */
public static CodedOutputStream newInstance(ByteBuffer buffer) {
if (buffer.hasArray()) {
return new HeapNioEncoder(buffer);
}
if (buffer.isDirect() && !buffer.isReadOnly()) {
return UnsafeDirectNioEncoder.isSupported()
? newUnsafeInstance(buffer)
: newSafeInstance(buffer);
}
throw new IllegalArgumentException("ByteBuffer is read-only");
}
/** For testing purposes only. */
static CodedOutputStream newUnsafeInstance(ByteBuffer buffer) {
return new UnsafeDirectNioEncoder(buffer);
}
/** For testing purposes only. */
static CodedOutputStream newSafeInstance(ByteBuffer buffer) {
return new SafeDirectNioEncoder(buffer);
}
/**
* Configures serialization to be deterministic.
*
*
The deterministic serialization guarantees that for a given binary, equal (defined by the
* {@code equals()} methods in protos) messages will always be serialized to the same bytes. This
* implies:
*
*
* - repeated serialization of a message will return the same bytes
*
- different processes of the same binary (which may be executing on different machines) will
* serialize equal messages to the same bytes.
*
*
* Note the deterministic serialization is NOT canonical across languages; it is also unstable
* across different builds with schema changes due to unknown fields. Users who need canonical
* serialization, e.g. persistent storage in a canonical form, fingerprinting, etc, should define
* their own canonicalization specification and implement the serializer using reflection APIs
* rather than relying on this API.
*
*
Once set, the serializer will: (Note this is an implementation detail and may subject to
* change in the future)
*
*
* - sort map entries by keys in lexicographical order or numerical order. Note: For string
* keys, the order is based on comparing the Unicode value of each character in the strings.
* The order may be different from the deterministic serialization in other languages where
* maps are sorted on the lexicographical order of the UTF8 encoded keys.
*
*/
public void useDeterministicSerialization() {
serializationDeterministic = true;
}
boolean isSerializationDeterministic() {
return serializationDeterministic;
}
private boolean serializationDeterministic;
/**
* Create a new {@code CodedOutputStream} that writes to the given {@link ByteBuffer}.
*
* @deprecated the size parameter is no longer used since use of an internal buffer is useless
* (and wasteful) when writing to a {@link ByteBuffer}. Use {@link #newInstance(ByteBuffer)}
* instead.
*/
@Deprecated
public static CodedOutputStream newInstance(ByteBuffer byteBuffer,
@SuppressWarnings("unused") int unused) {
return newInstance(byteBuffer);
}
/**
* Create a new {@code CodedOutputStream} that writes to the provided {@link ByteOutput}.
*
* NOTE: The {@link ByteOutput} MUST NOT modify the provided buffers. Doing
* so may result in corrupted data, which would be difficult to debug.
*
* @param byteOutput the output target for encoded bytes.
* @param bufferSize the size of the internal scratch buffer to be used for string encoding.
* Setting this to {@code 0} will disable buffering, requiring an allocation for each encoded
* string.
*/
static CodedOutputStream newInstance(ByteOutput byteOutput, int bufferSize) {
if (bufferSize < 0) {
throw new IllegalArgumentException("bufferSize must be positive");
}
return new ByteOutputEncoder(byteOutput, bufferSize);
}
// Disallow construction outside of this class.
private CodedOutputStream() {
}
// -----------------------------------------------------------------
/** Encode and write a tag. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeTag(int fieldNumber, int wireType) throws IOException;
/** Write an {@code int32} field, including tag, to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeInt32(int fieldNumber, int value) throws IOException;
/** Write a {@code uint32} field, including tag, to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeUInt32(int fieldNumber, int value) throws IOException;
/** Write a {@code sint32} field, including tag, to the stream. */
public final void writeSInt32(final int fieldNumber, final int value) throws IOException {
writeUInt32(fieldNumber, encodeZigZag32(value));
}
/** Write a {@code fixed32} field, including tag, to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeFixed32(int fieldNumber, int value) throws IOException;
/** Write an {@code sfixed32} field, including tag, to the stream. */
public final void writeSFixed32(final int fieldNumber, final int value) throws IOException {
writeFixed32(fieldNumber, value);
}
/** Write an {@code int64} field, including tag, to the stream. */
public final void writeInt64(final int fieldNumber, final long value) throws IOException {
writeUInt64(fieldNumber, value);
}
/** Write a {@code uint64} field, including tag, to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeUInt64(int fieldNumber, long value) throws IOException;
/** Write an {@code sint64} field, including tag, to the stream. */
public final void writeSInt64(final int fieldNumber, final long value) throws IOException {
writeUInt64(fieldNumber, encodeZigZag64(value));
}
/** Write a {@code fixed64} field, including tag, to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeFixed64(int fieldNumber, long value) throws IOException;
/** Write an {@code sfixed64} field, including tag, to the stream. */
public final void writeSFixed64(final int fieldNumber, final long value) throws IOException {
writeFixed64(fieldNumber, value);
}
/** Write a {@code float} field, including tag, to the stream. */
public final void writeFloat(final int fieldNumber, final float value) throws IOException {
writeFixed32(fieldNumber, Float.floatToRawIntBits(value));
}
/** Write a {@code double} field, including tag, to the stream. */
public final void writeDouble(final int fieldNumber, final double value) throws IOException {
writeFixed64(fieldNumber, Double.doubleToRawLongBits(value));
}
/** Write a {@code bool} field, including tag, to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeBool(int fieldNumber, boolean value) throws IOException;
/**
* Write an enum field, including tag, to the stream. The provided value is the numeric
* value used to represent the enum value on the wire (not the enum ordinal value).
*/
public final void writeEnum(final int fieldNumber, final int value) throws IOException {
writeInt32(fieldNumber, value);
}
/** Write a {@code string} field, including tag, to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeString(int fieldNumber, String value) throws IOException;
/** Write a {@code bytes} field, including tag, to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeBytes(int fieldNumber, ByteString value) throws IOException;
/** Write a {@code bytes} field, including tag, to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeByteArray(int fieldNumber, byte[] value) throws IOException;
/** Write a {@code bytes} field, including tag, to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeByteArray(int fieldNumber, byte[] value, int offset, int length)
throws IOException;
/**
* Write a {@code bytes} field, including tag, to the stream.
* This method will write all content of the ByteBuffer regardless of the
* current position and limit (i.e., the number of bytes to be written is
* value.capacity(), not value.remaining()). Furthermore, this method doesn't
* alter the state of the passed-in ByteBuffer. Its position, limit, mark,
* etc. will remain unchanged. If you only want to write the remaining bytes
* of a ByteBuffer, you can call
* {@code writeByteBuffer(fieldNumber, byteBuffer.slice())}.
*/
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeByteBuffer(int fieldNumber, ByteBuffer value) throws IOException;
/**
* Write a single byte.
*/
public final void writeRawByte(final byte value) throws IOException {
write(value);
}
/** Write a single byte, represented by an integer value. */
public final void writeRawByte(final int value) throws IOException {
write((byte) value);
}
/** Write an array of bytes. */
public final void writeRawBytes(final byte[] value) throws IOException {
write(value, 0, value.length);
}
/**
* Write part of an array of bytes.
*/
public final void writeRawBytes(final byte[] value, int offset, int length) throws IOException {
write(value, offset, length);
}
/** Write a byte string. */
public final void writeRawBytes(final ByteString value) throws IOException {
value.writeTo(this);
}
/**
* Write a ByteBuffer. This method will write all content of the ByteBuffer
* regardless of the current position and limit (i.e., the number of bytes
* to be written is value.capacity(), not value.remaining()). Furthermore,
* this method doesn't alter the state of the passed-in ByteBuffer. Its
* position, limit, mark, etc. will remain unchanged. If you only want to
* write the remaining bytes of a ByteBuffer, you can call
* {@code writeRawBytes(byteBuffer.slice())}.
*/
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeRawBytes(final ByteBuffer value) throws IOException;
/** Write an embedded message field, including tag, to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeMessage(final int fieldNumber, final MessageLite value)
throws IOException;
/**
* Write a MessageSet extension field to the stream. For historical reasons,
* the wire format differs from normal fields.
*/
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeMessageSetExtension(final int fieldNumber, final MessageLite value)
throws IOException;
/**
* Write an unparsed MessageSet extension field to the stream. For
* historical reasons, the wire format differs from normal fields.
*/
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeRawMessageSetExtension(final int fieldNumber, final ByteString value)
throws IOException;
// -----------------------------------------------------------------
/** Write an {@code int32} field to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeInt32NoTag(final int value) throws IOException;
/** Write a {@code uint32} field to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeUInt32NoTag(int value) throws IOException;
/** Write a {@code sint32} field to the stream. */
public final void writeSInt32NoTag(final int value) throws IOException {
writeUInt32NoTag(encodeZigZag32(value));
}
/** Write a {@code fixed32} field to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeFixed32NoTag(int value) throws IOException;
/** Write a {@code sfixed32} field to the stream. */
public final void writeSFixed32NoTag(final int value) throws IOException {
writeFixed32NoTag(value);
}
/** Write an {@code int64} field to the stream. */
public final void writeInt64NoTag(final long value) throws IOException {
writeUInt64NoTag(value);
}
/** Write a {@code uint64} field to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeUInt64NoTag(long value) throws IOException;
/** Write a {@code sint64} field to the stream. */
public final void writeSInt64NoTag(final long value) throws IOException {
writeUInt64NoTag(encodeZigZag64(value));
}
/** Write a {@code fixed64} field to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeFixed64NoTag(long value) throws IOException;
/** Write a {@code sfixed64} field to the stream. */
public final void writeSFixed64NoTag(final long value) throws IOException {
writeFixed64NoTag(value);
}
/** Write a {@code float} field to the stream. */
public final void writeFloatNoTag(final float value) throws IOException {
writeFixed32NoTag(Float.floatToRawIntBits(value));
}
/** Write a {@code double} field to the stream. */
public final void writeDoubleNoTag(final double value) throws IOException {
writeFixed64NoTag(Double.doubleToRawLongBits(value));
}
/** Write a {@code bool} field to the stream. */
public final void writeBoolNoTag(final boolean value) throws IOException {
write((byte) (value ? 1 : 0));
}
/**
* Write an enum field to the stream. The provided value is the numeric
* value used to represent the enum value on the wire (not the enum ordinal value).
*/
public final void writeEnumNoTag(final int value) throws IOException {
writeInt32NoTag(value);
}
/** Write a {@code string} field to the stream. */
// TODO(dweis): Document behavior on ill-formed UTF-16 input.
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeStringNoTag(String value) throws IOException;
/** Write a {@code bytes} field to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeBytesNoTag(final ByteString value) throws IOException;
/** Write a {@code bytes} field to the stream. */
public final void writeByteArrayNoTag(final byte[] value) throws IOException {
writeByteArrayNoTag(value, 0, value.length);
}
/** Write an embedded message field to the stream. */
// Abstract to avoid overhead of additional virtual method calls.
public abstract void writeMessageNoTag(final MessageLite value) throws IOException;
//=================================================================
@ExperimentalApi
@Override
public abstract void write(byte value) throws IOException;
@ExperimentalApi
@Override
public abstract void write(byte[] value, int offset, int length) throws IOException;
@ExperimentalApi
@Override
public abstract void writeLazy(byte[] value, int offset, int length) throws IOException;
@Override
public abstract void write(ByteBuffer value) throws IOException;
@ExperimentalApi
@Override
public abstract void writeLazy(ByteBuffer value) throws IOException;
// =================================================================
// =================================================================
/**
* Compute the number of bytes that would be needed to encode an
* {@code int32} field, including tag.
*/
public static int computeInt32Size(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeInt32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code uint32} field, including tag.
*/
public static int computeUInt32Size(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeUInt32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sint32} field, including tag.
*/
public static int computeSInt32Size(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeSInt32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code fixed32} field, including tag.
*/
public static int computeFixed32Size(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeFixed32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sfixed32} field, including tag.
*/
public static int computeSFixed32Size(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeSFixed32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code int64} field, including tag.
*/
public static int computeInt64Size(final int fieldNumber, final long value) {
return computeTagSize(fieldNumber) + computeInt64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code uint64} field, including tag.
*/
public static int computeUInt64Size(final int fieldNumber, final long value) {
return computeTagSize(fieldNumber) + computeUInt64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sint64} field, including tag.
*/
public static int computeSInt64Size(final int fieldNumber, final long value) {
return computeTagSize(fieldNumber) + computeSInt64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code fixed64} field, including tag.
*/
public static int computeFixed64Size(final int fieldNumber, final long value) {
return computeTagSize(fieldNumber) + computeFixed64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sfixed64} field, including tag.
*/
public static int computeSFixed64Size(final int fieldNumber, final long value) {
return computeTagSize(fieldNumber) + computeSFixed64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code float} field, including tag.
*/
public static int computeFloatSize(final int fieldNumber, final float value) {
return computeTagSize(fieldNumber) + computeFloatSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code double} field, including tag.
*/
public static int computeDoubleSize(final int fieldNumber, final double value) {
return computeTagSize(fieldNumber) + computeDoubleSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bool} field, including tag.
*/
public static int computeBoolSize(final int fieldNumber, final boolean value) {
return computeTagSize(fieldNumber) + computeBoolSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* enum field, including tag. The provided value is the numeric
* value used to represent the enum value on the wire (not the enum ordinal value).
*/
public static int computeEnumSize(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeEnumSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code string} field, including tag.
*/
public static int computeStringSize(final int fieldNumber, final String value) {
return computeTagSize(fieldNumber) + computeStringSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field, including tag.
*/
public static int computeBytesSize(final int fieldNumber, final ByteString value) {
return computeTagSize(fieldNumber) + computeBytesSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field, including tag.
*/
public static int computeByteArraySize(final int fieldNumber, final byte[] value) {
return computeTagSize(fieldNumber) + computeByteArraySizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field, including tag.
*/
public static int computeByteBufferSize(final int fieldNumber, final ByteBuffer value) {
return computeTagSize(fieldNumber) + computeByteBufferSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* embedded message in lazy field, including tag.
*/
public static int computeLazyFieldSize(final int fieldNumber, final LazyFieldLite value) {
return computeTagSize(fieldNumber) + computeLazyFieldSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* embedded message field, including tag.
*/
public static int computeMessageSize(final int fieldNumber, final MessageLite value) {
return computeTagSize(fieldNumber) + computeMessageSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* MessageSet extension to the stream. For historical reasons,
* the wire format differs from normal fields.
*/
public static int computeMessageSetExtensionSize(final int fieldNumber, final MessageLite value) {
return computeTagSize(WireFormat.MESSAGE_SET_ITEM) * 2
+ computeUInt32Size(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber)
+ computeMessageSize(WireFormat.MESSAGE_SET_MESSAGE, value);
}
/**
* Compute the number of bytes that would be needed to encode an
* unparsed MessageSet extension field to the stream. For
* historical reasons, the wire format differs from normal fields.
*/
public static int computeRawMessageSetExtensionSize(
final int fieldNumber, final ByteString value) {
return computeTagSize(WireFormat.MESSAGE_SET_ITEM) * 2
+ computeUInt32Size(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber)
+ computeBytesSize(WireFormat.MESSAGE_SET_MESSAGE, value);
}
/**
* Compute the number of bytes that would be needed to encode an
* lazily parsed MessageSet extension field to the stream. For
* historical reasons, the wire format differs from normal fields.
*/
public static int computeLazyFieldMessageSetExtensionSize(
final int fieldNumber, final LazyFieldLite value) {
return computeTagSize(WireFormat.MESSAGE_SET_ITEM) * 2
+ computeUInt32Size(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber)
+ computeLazyFieldSize(WireFormat.MESSAGE_SET_MESSAGE, value);
}
// -----------------------------------------------------------------
/** Compute the number of bytes that would be needed to encode a tag. */
public static int computeTagSize(final int fieldNumber) {
return computeUInt32SizeNoTag(WireFormat.makeTag(fieldNumber, 0));
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code int32} field, including tag.
*/
public static int computeInt32SizeNoTag(final int value) {
if (value >= 0) {
return computeUInt32SizeNoTag(value);
} else {
// Must sign-extend.
return MAX_VARINT_SIZE;
}
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code uint32} field.
*/
public static int computeUInt32SizeNoTag(final int value) {
if ((value & (~0 << 7)) == 0) {
return 1;
}
if ((value & (~0 << 14)) == 0) {
return 2;
}
if ((value & (~0 << 21)) == 0) {
return 3;
}
if ((value & (~0 << 28)) == 0) {
return 4;
}
return 5;
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sint32} field.
*/
public static int computeSInt32SizeNoTag(final int value) {
return computeUInt32SizeNoTag(encodeZigZag32(value));
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code fixed32} field.
*/
public static int computeFixed32SizeNoTag(@SuppressWarnings("unused") final int unused) {
return FIXED32_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sfixed32} field.
*/
public static int computeSFixed32SizeNoTag(@SuppressWarnings("unused") final int unused) {
return FIXED32_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code int64} field, including tag.
*/
public static int computeInt64SizeNoTag(final long value) {
return computeUInt64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code uint64} field, including tag.
*/
public static int computeUInt64SizeNoTag(long value) {
// handle two popular special cases up front ...
if ((value & (~0L << 7)) == 0L) {
return 1;
}
if (value < 0L) {
return 10;
}
// ... leaving us with 8 remaining, which we can divide and conquer
int n = 2;
if ((value & (~0L << 35)) != 0L) {
n += 4; value >>>= 28;
}
if ((value & (~0L << 21)) != 0L) {
n += 2; value >>>= 14;
}
if ((value & (~0L << 14)) != 0L) {
n += 1;
}
return n;
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sint64} field.
*/
public static int computeSInt64SizeNoTag(final long value) {
return computeUInt64SizeNoTag(encodeZigZag64(value));
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code fixed64} field.
*/
public static int computeFixed64SizeNoTag(@SuppressWarnings("unused") final long unused) {
return FIXED64_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sfixed64} field.
*/
public static int computeSFixed64SizeNoTag(@SuppressWarnings("unused") final long unused) {
return FIXED64_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code float} field, including tag.
*/
public static int computeFloatSizeNoTag(@SuppressWarnings("unused") final float unused) {
return FIXED32_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code double} field, including tag.
*/
public static int computeDoubleSizeNoTag(@SuppressWarnings("unused") final double unused) {
return FIXED64_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bool} field.
*/
public static int computeBoolSizeNoTag(@SuppressWarnings("unused") final boolean unused) {
return 1;
}
/**
* Compute the number of bytes that would be needed to encode an enum field.
* The provided value is the numeric value used to represent the enum value on the wire
* (not the enum ordinal value).
*/
public static int computeEnumSizeNoTag(final int value) {
return computeInt32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code string} field.
*/
public static int computeStringSizeNoTag(final String value) {
int length;
try {
length = Utf8.encodedLength(value);
} catch (UnpairedSurrogateException e) {
// TODO(dweis): Consider using nio Charset methods instead.
final byte[] bytes = value.getBytes(Internal.UTF_8);
length = bytes.length;
}
return computeLengthDelimitedFieldSize(length);
}
/**
* Compute the number of bytes that would be needed to encode an embedded
* message stored in lazy field.
*/
public static int computeLazyFieldSizeNoTag(final LazyFieldLite value) {
return computeLengthDelimitedFieldSize(value.getSerializedSize());
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field.
*/
public static int computeBytesSizeNoTag(final ByteString value) {
return computeLengthDelimitedFieldSize(value.size());
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field.
*/
public static int computeByteArraySizeNoTag(final byte[] value) {
return computeLengthDelimitedFieldSize(value.length);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field.
*/
public static int computeByteBufferSizeNoTag(final ByteBuffer value) {
return computeLengthDelimitedFieldSize(value.capacity());
}
/**
* Compute the number of bytes that would be needed to encode an embedded
* message field.
*/
public static int computeMessageSizeNoTag(final MessageLite value) {
return computeLengthDelimitedFieldSize(value.getSerializedSize());
}
static int computeLengthDelimitedFieldSize(int fieldLength) {
return computeUInt32SizeNoTag(fieldLength) + fieldLength;
}
/**
* Encode a ZigZag-encoded 32-bit value. ZigZag encodes signed integers
* into values that can be efficiently encoded with varint. (Otherwise,
* negative values must be sign-extended to 64 bits to be varint encoded,
* thus always taking 10 bytes on the wire.)
*
* @param n A signed 32-bit integer.
* @return An unsigned 32-bit integer, stored in a signed int because
* Java has no explicit unsigned support.
*/
public static int encodeZigZag32(final int n) {
// Note: the right-shift must be arithmetic
return (n << 1) ^ (n >> 31);
}
/**
* Encode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers
* into values that can be efficiently encoded with varint. (Otherwise,
* negative values must be sign-extended to 64 bits to be varint encoded,
* thus always taking 10 bytes on the wire.)
*
* @param n A signed 64-bit integer.
* @return An unsigned 64-bit integer, stored in a signed int because
* Java has no explicit unsigned support.
*/
public static long encodeZigZag64(final long n) {
// Note: the right-shift must be arithmetic
return (n << 1) ^ (n >> 63);
}
// =================================================================
/**
* Flushes the stream and forces any buffered bytes to be written. This
* does not flush the underlying OutputStream.
*/
public abstract void flush() throws IOException;
/**
* If writing to a flat array, return the space left in the array.
* Otherwise, throws {@code UnsupportedOperationException}.
*/
public abstract int spaceLeft();
/**
* Verifies that {@link #spaceLeft()} returns zero. It's common to create
* a byte array that is exactly big enough to hold a message, then write to
* it with a {@code CodedOutputStream}. Calling {@code checkNoSpaceLeft()}
* after writing verifies that the message was actually as big as expected,
* which can help catch bugs.
*/
public final void checkNoSpaceLeft() {
if (spaceLeft() != 0) {
throw new IllegalStateException("Did not write as much data as expected.");
}
}
/**
* If you create a CodedOutputStream around a simple flat array, you must
* not attempt to write more bytes than the array has space. Otherwise,
* this exception will be thrown.
*/
public static class OutOfSpaceException extends IOException {
private static final long serialVersionUID = -6947486886997889499L;
private static final String MESSAGE =
"CodedOutputStream was writing to a flat byte array and ran out of space.";
OutOfSpaceException() {
super(MESSAGE);
}
OutOfSpaceException(String explanationMessage) {
super(MESSAGE + ": " + explanationMessage);
}
OutOfSpaceException(Throwable cause) {
super(MESSAGE, cause);
}
OutOfSpaceException(String explanationMessage, Throwable cause) {
super(MESSAGE + ": " + explanationMessage, cause);
}
}
/**
* Get the total number of bytes successfully written to this stream. The
* returned value is not guaranteed to be accurate if exceptions have been
* found in the middle of writing.
*/
public abstract int getTotalBytesWritten();
// =================================================================
/** Write a {@code bytes} field to the stream. Visible for testing. */
abstract void writeByteArrayNoTag(final byte[] value, final int offset, final int length)
throws IOException;
final void inefficientWriteStringNoTag(String value, UnpairedSurrogateException cause)
throws IOException {
logger.log(Level.WARNING,
"Converting ill-formed UTF-16. Your Protocol Buffer will not round trip correctly!", cause);
// Unfortunately there does not appear to be any way to tell Java to encode
// UTF-8 directly into our buffer, so we have to let it create its own byte
// array and then copy.
// TODO(dweis): Consider using nio Charset methods instead.
final byte[] bytes = value.getBytes(Internal.UTF_8);
try {
writeUInt32NoTag(bytes.length);
writeLazy(bytes, 0, bytes.length);
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(e);
} catch (OutOfSpaceException e) {
throw e;
}
}
// =================================================================
/**
* Write a {@code group} field, including tag, to the stream.
*
* @deprecated groups are deprecated.
*/
@Deprecated
public final void writeGroup(final int fieldNumber, final MessageLite value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_START_GROUP);
writeGroupNoTag(value);
writeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP);
}
/**
* Write a {@code group} field to the stream.
*
* @deprecated groups are deprecated.
*/
@Deprecated
public final void writeGroupNoTag(final MessageLite value) throws IOException {
value.writeTo(this);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code group} field, including tag.
*
* @deprecated groups are deprecated.
*/
@Deprecated
public static int computeGroupSize(final int fieldNumber, final MessageLite value) {
return computeTagSize(fieldNumber) * 2 + computeGroupSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code group} field.
*/
@Deprecated
public static int computeGroupSizeNoTag(final MessageLite value) {
return value.getSerializedSize();
}
/**
* Encode and write a varint. {@code value} is treated as
* unsigned, so it won't be sign-extended if negative.
*
* @deprecated use {@link #writeUInt32NoTag} instead.
*/
@Deprecated
public final void writeRawVarint32(int value) throws IOException {
writeUInt32NoTag(value);
}
/**
* Encode and write a varint.
*
* @deprecated use {@link #writeUInt64NoTag} instead.
*/
@Deprecated
public final void writeRawVarint64(long value) throws IOException {
writeUInt64NoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a varint.
* {@code value} is treated as unsigned, so it won't be sign-extended if
* negative.
*
* @deprecated use {@link #computeUInt32SizeNoTag(int)} instead.
*/
@Deprecated
public static int computeRawVarint32Size(final int value) {
return computeUInt32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a varint.
*
* @deprecated use {@link #computeUInt64SizeNoTag(long)} instead.
*/
@Deprecated
public static int computeRawVarint64Size(long value) {
return computeUInt64SizeNoTag(value);
}
/**
* Write a little-endian 32-bit integer.
*
* @deprecated Use {@link #writeFixed32NoTag} instead.
*/
@Deprecated
public final void writeRawLittleEndian32(final int value) throws IOException {
writeFixed32NoTag(value);
}
/**
* Write a little-endian 64-bit integer.
*
* @deprecated Use {@link #writeFixed64NoTag} instead.
*/
@Deprecated
public final void writeRawLittleEndian64(final long value) throws IOException {
writeFixed64NoTag(value);
}
// =================================================================
/**
* A {@link CodedOutputStream} that writes directly to a byte array.
*/
private static class ArrayEncoder extends CodedOutputStream {
private final byte[] buffer;
private final int offset;
private final int limit;
private int position;
ArrayEncoder(byte[] buffer, int offset, int length) {
if (buffer == null) {
throw new NullPointerException("buffer");
}
if ((offset | length | (buffer.length - (offset + length))) < 0) {
throw new IllegalArgumentException(String.format(
"Array range is invalid. Buffer.length=%d, offset=%d, length=%d",
buffer.length, offset, length));
}
this.buffer = buffer;
this.offset = offset;
position = offset;
limit = offset + length;
}
@Override
public final void writeTag(final int fieldNumber, final int wireType) throws IOException {
writeUInt32NoTag(WireFormat.makeTag(fieldNumber, wireType));
}
@Override
public final void writeInt32(final int fieldNumber, final int value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeInt32NoTag(value);
}
@Override
public final void writeUInt32(final int fieldNumber, final int value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeUInt32NoTag(value);
}
@Override
public final void writeFixed32(final int fieldNumber, final int value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED32);
writeFixed32NoTag(value);
}
@Override
public final void writeUInt64(final int fieldNumber, final long value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeUInt64NoTag(value);
}
@Override
public final void writeFixed64(final int fieldNumber, final long value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED64);
writeFixed64NoTag(value);
}
@Override
public final void writeBool(final int fieldNumber, final boolean value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
write((byte) (value ? 1 : 0));
}
@Override
public final void writeString(final int fieldNumber, final String value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeStringNoTag(value);
}
@Override
public final void writeBytes(final int fieldNumber, final ByteString value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeBytesNoTag(value);
}
@Override
public final void writeByteArray(final int fieldNumber, final byte[] value) throws IOException {
writeByteArray(fieldNumber, value, 0, value.length);
}
@Override
public final void writeByteArray(
final int fieldNumber, final byte[] value, final int offset, final int length)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeByteArrayNoTag(value, offset, length);
}
@Override
public final void writeByteBuffer(final int fieldNumber, final ByteBuffer value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeUInt32NoTag(value.capacity());
writeRawBytes(value);
}
@Override
public final void writeBytesNoTag(final ByteString value) throws IOException {
writeUInt32NoTag(value.size());
value.writeTo(this);
}
@Override
public final void writeByteArrayNoTag(final byte[] value, int offset, int length)
throws IOException {
writeUInt32NoTag(length);
write(value, offset, length);
}
@Override
public final void writeRawBytes(final ByteBuffer value) throws IOException {
if (value.hasArray()) {
write(value.array(), value.arrayOffset(), value.capacity());
} else {
ByteBuffer duplicated = value.duplicate();
duplicated.clear();
write(duplicated);
}
}
@Override
public final void writeMessage(final int fieldNumber, final MessageLite value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeMessageNoTag(value);
}
@Override
public final void writeMessageSetExtension(final int fieldNumber, final MessageLite value)
throws IOException {
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP);
writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber);
writeMessage(WireFormat.MESSAGE_SET_MESSAGE, value);
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP);
}
@Override
public final void writeRawMessageSetExtension(final int fieldNumber, final ByteString value)
throws IOException {
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP);
writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber);
writeBytes(WireFormat.MESSAGE_SET_MESSAGE, value);
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP);
}
@Override
public final void writeMessageNoTag(final MessageLite value) throws IOException {
writeUInt32NoTag(value.getSerializedSize());
value.writeTo(this);
}
@Override
public final void write(byte value) throws IOException {
try {
buffer[position++] = value;
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(
String.format("Pos: %d, limit: %d, len: %d", position, limit, 1), e);
}
}
@Override
public final void writeInt32NoTag(int value) throws IOException {
if (value >= 0) {
writeUInt32NoTag(value);
} else {
// Must sign-extend.
writeUInt64NoTag(value);
}
}
@Override
public final void writeUInt32NoTag(int value) throws IOException {
if (HAS_UNSAFE_ARRAY_OPERATIONS && spaceLeft() >= MAX_VARINT_SIZE) {
while (true) {
if ((value & ~0x7F) == 0) {
UnsafeUtil.putByte(buffer, position++, (byte) value);
return;
} else {
UnsafeUtil.putByte(buffer, position++, (byte) ((value & 0x7F) | 0x80));
value >>>= 7;
}
}
} else {
try {
while (true) {
if ((value & ~0x7F) == 0) {
buffer[position++] = (byte) value;
return;
} else {
buffer[position++] = (byte) ((value & 0x7F) | 0x80);
value >>>= 7;
}
}
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(
String.format("Pos: %d, limit: %d, len: %d", position, limit, 1), e);
}
}
}
@Override
public final void writeFixed32NoTag(int value) throws IOException {
try {
buffer[position++] = (byte) (value & 0xFF);
buffer[position++] = (byte) ((value >> 8) & 0xFF);
buffer[position++] = (byte) ((value >> 16) & 0xFF);
buffer[position++] = (byte) ((value >> 24) & 0xFF);
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(
String.format("Pos: %d, limit: %d, len: %d", position, limit, 1), e);
}
}
@Override
public final void writeUInt64NoTag(long value) throws IOException {
if (HAS_UNSAFE_ARRAY_OPERATIONS && spaceLeft() >= MAX_VARINT_SIZE) {
while (true) {
if ((value & ~0x7FL) == 0) {
UnsafeUtil.putByte(buffer, position++, (byte) value);
return;
} else {
UnsafeUtil.putByte(buffer, position++, (byte) (((int) value & 0x7F) | 0x80));
value >>>= 7;
}
}
} else {
try {
while (true) {
if ((value & ~0x7FL) == 0) {
buffer[position++] = (byte) value;
return;
} else {
buffer[position++] = (byte) (((int) value & 0x7F) | 0x80);
value >>>= 7;
}
}
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(
String.format("Pos: %d, limit: %d, len: %d", position, limit, 1), e);
}
}
}
@Override
public final void writeFixed64NoTag(long value) throws IOException {
try {
buffer[position++] = (byte) ((int) (value) & 0xFF);
buffer[position++] = (byte) ((int) (value >> 8) & 0xFF);
buffer[position++] = (byte) ((int) (value >> 16) & 0xFF);
buffer[position++] = (byte) ((int) (value >> 24) & 0xFF);
buffer[position++] = (byte) ((int) (value >> 32) & 0xFF);
buffer[position++] = (byte) ((int) (value >> 40) & 0xFF);
buffer[position++] = (byte) ((int) (value >> 48) & 0xFF);
buffer[position++] = (byte) ((int) (value >> 56) & 0xFF);
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(
String.format("Pos: %d, limit: %d, len: %d", position, limit, 1), e);
}
}
@Override
public final void write(byte[] value, int offset, int length) throws IOException {
try {
System.arraycopy(value, offset, buffer, position, length);
position += length;
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(
String.format("Pos: %d, limit: %d, len: %d", position, limit, length), e);
}
}
@Override
public final void writeLazy(byte[] value, int offset, int length) throws IOException {
write(value, offset, length);
}
@Override
public final void write(ByteBuffer value) throws IOException {
final int length = value.remaining();
try {
value.get(buffer, position, length);
position += length;
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(
String.format("Pos: %d, limit: %d, len: %d", position, limit, length), e);
}
}
@Override
public final void writeLazy(ByteBuffer value) throws IOException {
write(value);
}
@Override
public final void writeStringNoTag(String value) throws IOException {
final int oldPosition = position;
try {
// UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()),
// and at most 3 times of it. We take advantage of this in both branches below.
final int maxLength = value.length() * Utf8.MAX_BYTES_PER_CHAR;
final int maxLengthVarIntSize = computeUInt32SizeNoTag(maxLength);
final int minLengthVarIntSize = computeUInt32SizeNoTag(value.length());
if (minLengthVarIntSize == maxLengthVarIntSize) {
position = oldPosition + minLengthVarIntSize;
int newPosition = Utf8.encode(value, buffer, position, spaceLeft());
// Since this class is stateful and tracks the position, we rewind and store the state,
// prepend the length, then reset it back to the end of the string.
position = oldPosition;
int length = newPosition - oldPosition - minLengthVarIntSize;
writeUInt32NoTag(length);
position = newPosition;
} else {
int length = Utf8.encodedLength(value);
writeUInt32NoTag(length);
position = Utf8.encode(value, buffer, position, spaceLeft());
}
} catch (UnpairedSurrogateException e) {
// Roll back the change - we fall back to inefficient path.
position = oldPosition;
// TODO(nathanmittler): We should throw an IOException here instead.
inefficientWriteStringNoTag(value, e);
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(e);
}
}
@Override
public void flush() {
// Do nothing.
}
@Override
public final int spaceLeft() {
return limit - position;
}
@Override
public final int getTotalBytesWritten() {
return position - offset;
}
}
/**
* A {@link CodedOutputStream} that writes directly to a heap {@link ByteBuffer}. Writes are
* done directly to the underlying array. The buffer position is only updated after a flush.
*/
private static final class HeapNioEncoder extends ArrayEncoder {
private final ByteBuffer byteBuffer;
private int initialPosition;
HeapNioEncoder(ByteBuffer byteBuffer) {
super(byteBuffer.array(), byteBuffer.arrayOffset() + byteBuffer.position(),
byteBuffer.remaining());
this.byteBuffer = byteBuffer;
this.initialPosition = byteBuffer.position();
}
@Override
public void flush() {
// Update the position on the buffer.
byteBuffer.position(initialPosition + getTotalBytesWritten());
}
}
/**
* A {@link CodedOutputStream} that writes directly to a direct {@link ByteBuffer}, using only
* safe operations..
*/
private static final class SafeDirectNioEncoder extends CodedOutputStream {
private final ByteBuffer originalBuffer;
private final ByteBuffer buffer;
private final int initialPosition;
SafeDirectNioEncoder(ByteBuffer buffer) {
this.originalBuffer = buffer;
this.buffer = buffer.duplicate().order(ByteOrder.LITTLE_ENDIAN);
initialPosition = buffer.position();
}
@Override
public void writeTag(final int fieldNumber, final int wireType) throws IOException {
writeUInt32NoTag(WireFormat.makeTag(fieldNumber, wireType));
}
@Override
public void writeInt32(final int fieldNumber, final int value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeInt32NoTag(value);
}
@Override
public void writeUInt32(final int fieldNumber, final int value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeUInt32NoTag(value);
}
@Override
public void writeFixed32(final int fieldNumber, final int value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED32);
writeFixed32NoTag(value);
}
@Override
public void writeUInt64(final int fieldNumber, final long value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeUInt64NoTag(value);
}
@Override
public void writeFixed64(final int fieldNumber, final long value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED64);
writeFixed64NoTag(value);
}
@Override
public void writeBool(final int fieldNumber, final boolean value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
write((byte) (value ? 1 : 0));
}
@Override
public void writeString(final int fieldNumber, final String value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeStringNoTag(value);
}
@Override
public void writeBytes(final int fieldNumber, final ByteString value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeBytesNoTag(value);
}
@Override
public void writeByteArray(final int fieldNumber, final byte[] value) throws IOException {
writeByteArray(fieldNumber, value, 0, value.length);
}
@Override
public void writeByteArray(
final int fieldNumber, final byte[] value, final int offset, final int length)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeByteArrayNoTag(value, offset, length);
}
@Override
public void writeByteBuffer(final int fieldNumber, final ByteBuffer value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeUInt32NoTag(value.capacity());
writeRawBytes(value);
}
@Override
public void writeMessage(final int fieldNumber, final MessageLite value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeMessageNoTag(value);
}
@Override
public void writeMessageSetExtension(final int fieldNumber, final MessageLite value)
throws IOException {
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP);
writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber);
writeMessage(WireFormat.MESSAGE_SET_MESSAGE, value);
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP);
}
@Override
public void writeRawMessageSetExtension(final int fieldNumber, final ByteString value)
throws IOException {
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP);
writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber);
writeBytes(WireFormat.MESSAGE_SET_MESSAGE, value);
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP);
}
@Override
public void writeMessageNoTag(final MessageLite value) throws IOException {
writeUInt32NoTag(value.getSerializedSize());
value.writeTo(this);
}
@Override
public void write(byte value) throws IOException {
try {
buffer.put(value);
} catch (BufferOverflowException e) {
throw new OutOfSpaceException(e);
}
}
@Override
public void writeBytesNoTag(final ByteString value) throws IOException {
writeUInt32NoTag(value.size());
value.writeTo(this);
}
@Override
public void writeByteArrayNoTag(final byte[] value, int offset, int length) throws IOException {
writeUInt32NoTag(length);
write(value, offset, length);
}
@Override
public void writeRawBytes(final ByteBuffer value) throws IOException {
if (value.hasArray()) {
write(value.array(), value.arrayOffset(), value.capacity());
} else {
ByteBuffer duplicated = value.duplicate();
duplicated.clear();
write(duplicated);
}
}
@Override
public void writeInt32NoTag(int value) throws IOException {
if (value >= 0) {
writeUInt32NoTag(value);
} else {
// Must sign-extend.
writeUInt64NoTag(value);
}
}
@Override
public void writeUInt32NoTag(int value) throws IOException {
try {
while (true) {
if ((value & ~0x7F) == 0) {
buffer.put((byte) value);
return;
} else {
buffer.put((byte) ((value & 0x7F) | 0x80));
value >>>= 7;
}
}
} catch (BufferOverflowException e) {
throw new OutOfSpaceException(e);
}
}
@Override
public void writeFixed32NoTag(int value) throws IOException {
try {
buffer.putInt(value);
} catch (BufferOverflowException e) {
throw new OutOfSpaceException(e);
}
}
@Override
public void writeUInt64NoTag(long value) throws IOException {
try {
while (true) {
if ((value & ~0x7FL) == 0) {
buffer.put((byte) value);
return;
} else {
buffer.put((byte) (((int) value & 0x7F) | 0x80));
value >>>= 7;
}
}
} catch (BufferOverflowException e) {
throw new OutOfSpaceException(e);
}
}
@Override
public void writeFixed64NoTag(long value) throws IOException {
try {
buffer.putLong(value);
} catch (BufferOverflowException e) {
throw new OutOfSpaceException(e);
}
}
@Override
public void write(byte[] value, int offset, int length) throws IOException {
try {
buffer.put(value, offset, length);
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(e);
} catch (BufferOverflowException e) {
throw new OutOfSpaceException(e);
}
}
@Override
public void writeLazy(byte[] value, int offset, int length) throws IOException {
write(value, offset, length);
}
@Override
public void write(ByteBuffer value) throws IOException {
try {
buffer.put(value);
} catch (BufferOverflowException e) {
throw new OutOfSpaceException(e);
}
}
@Override
public void writeLazy(ByteBuffer value) throws IOException {
write(value);
}
@Override
public void writeStringNoTag(String value) throws IOException {
final int startPos = buffer.position();
try {
// UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()),
// and at most 3 times of it. We take advantage of this in both branches below.
final int maxEncodedSize = value.length() * Utf8.MAX_BYTES_PER_CHAR;
final int maxLengthVarIntSize = computeUInt32SizeNoTag(maxEncodedSize);
final int minLengthVarIntSize = computeUInt32SizeNoTag(value.length());
if (minLengthVarIntSize == maxLengthVarIntSize) {
// Save the current position and increment past the length field. We'll come back
// and write the length field after the encoding is complete.
final int startOfBytes = buffer.position() + minLengthVarIntSize;
buffer.position(startOfBytes);
// Encode the string.
encode(value);
// Now go back to the beginning and write the length.
int endOfBytes = buffer.position();
buffer.position(startPos);
writeUInt32NoTag(endOfBytes - startOfBytes);
// Reposition the buffer past the written data.
buffer.position(endOfBytes);
} else {
final int length = Utf8.encodedLength(value);
writeUInt32NoTag(length);
encode(value);
}
} catch (UnpairedSurrogateException e) {
// Roll back the change and convert to an IOException.
buffer.position(startPos);
// TODO(nathanmittler): We should throw an IOException here instead.
inefficientWriteStringNoTag(value, e);
} catch (IllegalArgumentException e) {
// Thrown by buffer.position() if out of range.
throw new OutOfSpaceException(e);
}
}
@Override
public void flush() {
// Update the position of the original buffer.
originalBuffer.position(buffer.position());
}
@Override
public int spaceLeft() {
return buffer.remaining();
}
@Override
public int getTotalBytesWritten() {
return buffer.position() - initialPosition;
}
private void encode(String value) throws IOException {
try {
Utf8.encodeUtf8(value, buffer);
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(e);
}
}
}
/**
* A {@link CodedOutputStream} that writes directly to a direct {@link ByteBuffer} using {@code
* sun.misc.Unsafe}.
*/
private static final class UnsafeDirectNioEncoder extends CodedOutputStream {
private final ByteBuffer originalBuffer;
private final ByteBuffer buffer;
private final long address;
private final long initialPosition;
private final long limit;
private final long oneVarintLimit;
private long position;
UnsafeDirectNioEncoder(ByteBuffer buffer) {
this.originalBuffer = buffer;
this.buffer = buffer.duplicate().order(ByteOrder.LITTLE_ENDIAN);
address = UnsafeUtil.addressOffset(buffer);
initialPosition = address + buffer.position();
limit = address + buffer.limit();
oneVarintLimit = limit - MAX_VARINT_SIZE;
position = initialPosition;
}
static boolean isSupported() {
return UnsafeUtil.hasUnsafeByteBufferOperations();
}
@Override
public void writeTag(int fieldNumber, int wireType) throws IOException {
writeUInt32NoTag(WireFormat.makeTag(fieldNumber, wireType));
}
@Override
public void writeInt32(int fieldNumber, int value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeInt32NoTag(value);
}
@Override
public void writeUInt32(int fieldNumber, int value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeUInt32NoTag(value);
}
@Override
public void writeFixed32(int fieldNumber, int value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED32);
writeFixed32NoTag(value);
}
@Override
public void writeUInt64(int fieldNumber, long value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeUInt64NoTag(value);
}
@Override
public void writeFixed64(int fieldNumber, long value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED64);
writeFixed64NoTag(value);
}
@Override
public void writeBool(int fieldNumber, boolean value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
write((byte) (value ? 1 : 0));
}
@Override
public void writeString(int fieldNumber, String value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeStringNoTag(value);
}
@Override
public void writeBytes(int fieldNumber, ByteString value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeBytesNoTag(value);
}
@Override
public void writeByteArray(int fieldNumber, byte[] value) throws IOException {
writeByteArray(fieldNumber, value, 0, value.length);
}
@Override
public void writeByteArray(int fieldNumber, byte[] value, int offset, int length)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeByteArrayNoTag(value, offset, length);
}
@Override
public void writeByteBuffer(int fieldNumber, ByteBuffer value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeUInt32NoTag(value.capacity());
writeRawBytes(value);
}
@Override
public void writeMessage(int fieldNumber, MessageLite value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeMessageNoTag(value);
}
@Override
public void writeMessageSetExtension(int fieldNumber, MessageLite value) throws IOException {
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP);
writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber);
writeMessage(WireFormat.MESSAGE_SET_MESSAGE, value);
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP);
}
@Override
public void writeRawMessageSetExtension(int fieldNumber, ByteString value) throws IOException {
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP);
writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber);
writeBytes(WireFormat.MESSAGE_SET_MESSAGE, value);
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP);
}
@Override
public void writeMessageNoTag(MessageLite value) throws IOException {
writeUInt32NoTag(value.getSerializedSize());
value.writeTo(this);
}
@Override
public void write(byte value) throws IOException {
if (position >= limit) {
throw new OutOfSpaceException(
String.format("Pos: %d, limit: %d, len: %d", position, limit, 1));
}
UnsafeUtil.putByte(position++, value);
}
@Override
public void writeBytesNoTag(ByteString value) throws IOException {
writeUInt32NoTag(value.size());
value.writeTo(this);
}
@Override
public void writeByteArrayNoTag(byte[] value, int offset, int length) throws IOException {
writeUInt32NoTag(length);
write(value, offset, length);
}
@Override
public void writeRawBytes(ByteBuffer value) throws IOException {
if (value.hasArray()) {
write(value.array(), value.arrayOffset(), value.capacity());
} else {
ByteBuffer duplicated = value.duplicate();
duplicated.clear();
write(duplicated);
}
}
@Override
public void writeInt32NoTag(int value) throws IOException {
if (value >= 0) {
writeUInt32NoTag(value);
} else {
// Must sign-extend.
writeUInt64NoTag(value);
}
}
@Override
public void writeUInt32NoTag(int value) throws IOException {
if (position <= oneVarintLimit) {
// Optimization to avoid bounds checks on each iteration.
while (true) {
if ((value & ~0x7F) == 0) {
UnsafeUtil.putByte(position++, (byte) value);
return;
} else {
UnsafeUtil.putByte(position++, (byte) ((value & 0x7F) | 0x80));
value >>>= 7;
}
}
} else {
while (position < limit) {
if ((value & ~0x7F) == 0) {
UnsafeUtil.putByte(position++, (byte) value);
return;
} else {
UnsafeUtil.putByte(position++, (byte) ((value & 0x7F) | 0x80));
value >>>= 7;
}
}
throw new OutOfSpaceException(
String.format("Pos: %d, limit: %d, len: %d", position, limit, 1));
}
}
@Override
public void writeFixed32NoTag(int value) throws IOException {
buffer.putInt(bufferPos(position), value);
position += FIXED32_SIZE;
}
@Override
public void writeUInt64NoTag(long value) throws IOException {
if (position <= oneVarintLimit) {
// Optimization to avoid bounds checks on each iteration.
while (true) {
if ((value & ~0x7FL) == 0) {
UnsafeUtil.putByte(position++, (byte) value);
return;
} else {
UnsafeUtil.putByte(position++, (byte) (((int) value & 0x7F) | 0x80));
value >>>= 7;
}
}
} else {
while (position < limit) {
if ((value & ~0x7FL) == 0) {
UnsafeUtil.putByte(position++, (byte) value);
return;
} else {
UnsafeUtil.putByte(position++, (byte) (((int) value & 0x7F) | 0x80));
value >>>= 7;
}
}
throw new OutOfSpaceException(
String.format("Pos: %d, limit: %d, len: %d", position, limit, 1));
}
}
@Override
public void writeFixed64NoTag(long value) throws IOException {
buffer.putLong(bufferPos(position), value);
position += FIXED64_SIZE;
}
@Override
public void write(byte[] value, int offset, int length) throws IOException {
if (value == null
|| offset < 0
|| length < 0
|| (value.length - length) < offset
|| (limit - length) < position) {
if (value == null) {
throw new NullPointerException("value");
}
throw new OutOfSpaceException(
String.format("Pos: %d, limit: %d, len: %d", position, limit, length));
}
UnsafeUtil.copyMemory(value, offset, position, length);
position += length;
}
@Override
public void writeLazy(byte[] value, int offset, int length) throws IOException {
write(value, offset, length);
}
@Override
public void write(ByteBuffer value) throws IOException {
try {
int length = value.remaining();
repositionBuffer(position);
buffer.put(value);
position += length;
} catch (BufferOverflowException e) {
throw new OutOfSpaceException(e);
}
}
@Override
public void writeLazy(ByteBuffer value) throws IOException {
write(value);
}
@Override
public void writeStringNoTag(String value) throws IOException {
long prevPos = position;
try {
// UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()),
// and at most 3 times of it. We take advantage of this in both branches below.
int maxEncodedSize = value.length() * Utf8.MAX_BYTES_PER_CHAR;
int maxLengthVarIntSize = computeUInt32SizeNoTag(maxEncodedSize);
int minLengthVarIntSize = computeUInt32SizeNoTag(value.length());
if (minLengthVarIntSize == maxLengthVarIntSize) {
// Save the current position and increment past the length field. We'll come back
// and write the length field after the encoding is complete.
int stringStart = bufferPos(position) + minLengthVarIntSize;
buffer.position(stringStart);
// Encode the string.
Utf8.encodeUtf8(value, buffer);
// Write the length and advance the position.
int length = buffer.position() - stringStart;
writeUInt32NoTag(length);
position += length;
} else {
// Calculate and write the encoded length.
int length = Utf8.encodedLength(value);
writeUInt32NoTag(length);
// Write the string and advance the position.
repositionBuffer(position);
Utf8.encodeUtf8(value, buffer);
position += length;
}
} catch (UnpairedSurrogateException e) {
// Roll back the change and convert to an IOException.
position = prevPos;
repositionBuffer(position);
// TODO(nathanmittler): We should throw an IOException here instead.
inefficientWriteStringNoTag(value, e);
} catch (IllegalArgumentException e) {
// Thrown by buffer.position() if out of range.
throw new OutOfSpaceException(e);
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(e);
}
}
@Override
public void flush() {
// Update the position of the original buffer.
originalBuffer.position(bufferPos(position));
}
@Override
public int spaceLeft() {
return (int) (limit - position);
}
@Override
public int getTotalBytesWritten() {
return (int) (position - initialPosition);
}
private void repositionBuffer(long pos) {
buffer.position(bufferPos(pos));
}
private int bufferPos(long pos) {
return (int) (pos - address);
}
}
/**
* Abstract base class for buffered encoders.
*/
private abstract static class AbstractBufferedEncoder extends CodedOutputStream {
final byte[] buffer;
final int limit;
int position;
int totalBytesWritten;
AbstractBufferedEncoder(int bufferSize) {
if (bufferSize < 0) {
throw new IllegalArgumentException("bufferSize must be >= 0");
}
// As an optimization, we require that the buffer be able to store at least 2
// varints so that we can buffer any integer write (tag + value). This reduces the
// number of range checks for a single write to 1 (i.e. if there is not enough space
// to buffer the tag+value, flush and then buffer it).
this.buffer = new byte[max(bufferSize, MAX_VARINT_SIZE * 2)];
this.limit = buffer.length;
}
@Override
public final int spaceLeft() {
throw new UnsupportedOperationException(
"spaceLeft() can only be called on CodedOutputStreams that are "
+ "writing to a flat array or ByteBuffer.");
}
@Override
public final int getTotalBytesWritten() {
return totalBytesWritten;
}
/**
* This method does not perform bounds checking on the array. Checking array bounds is the
* responsibility of the caller.
*/
final void buffer(byte value) {
buffer[position++] = value;
totalBytesWritten++;
}
/**
* This method does not perform bounds checking on the array. Checking array bounds is the
* responsibility of the caller.
*/
final void bufferTag(final int fieldNumber, final int wireType) {
bufferUInt32NoTag(WireFormat.makeTag(fieldNumber, wireType));
}
/**
* This method does not perform bounds checking on the array. Checking array bounds is the
* responsibility of the caller.
*/
final void bufferInt32NoTag(final int value) {
if (value >= 0) {
bufferUInt32NoTag(value);
} else {
// Must sign-extend.
bufferUInt64NoTag(value);
}
}
/**
* This method does not perform bounds checking on the array. Checking array bounds is the
* responsibility of the caller.
*/
final void bufferUInt32NoTag(int value) {
if (HAS_UNSAFE_ARRAY_OPERATIONS) {
final long originalPos = position;
while (true) {
if ((value & ~0x7F) == 0) {
UnsafeUtil.putByte(buffer, position++, (byte) value);
break;
} else {
UnsafeUtil.putByte(buffer, position++, (byte) ((value & 0x7F) | 0x80));
value >>>= 7;
}
}
int delta = (int) (position - originalPos);
totalBytesWritten += delta;
} else {
while (true) {
if ((value & ~0x7F) == 0) {
buffer[position++] = (byte) value;
totalBytesWritten++;
return;
} else {
buffer[position++] = (byte) ((value & 0x7F) | 0x80);
totalBytesWritten++;
value >>>= 7;
}
}
}
}
/**
* This method does not perform bounds checking on the array. Checking array bounds is the
* responsibility of the caller.
*/
final void bufferUInt64NoTag(long value) {
if (HAS_UNSAFE_ARRAY_OPERATIONS) {
final long originalPos = position;
while (true) {
if ((value & ~0x7FL) == 0) {
UnsafeUtil.putByte(buffer, position++, (byte) value);
break;
} else {
UnsafeUtil.putByte(buffer, position++, (byte) (((int) value & 0x7F) | 0x80));
value >>>= 7;
}
}
int delta = (int) (position - originalPos);
totalBytesWritten += delta;
} else {
while (true) {
if ((value & ~0x7FL) == 0) {
buffer[position++] = (byte) value;
totalBytesWritten++;
return;
} else {
buffer[position++] = (byte) (((int) value & 0x7F) | 0x80);
totalBytesWritten++;
value >>>= 7;
}
}
}
}
/**
* This method does not perform bounds checking on the array. Checking array bounds is the
* responsibility of the caller.
*/
final void bufferFixed32NoTag(int value) {
buffer[position++] = (byte) (value & 0xFF);
buffer[position++] = (byte) ((value >> 8) & 0xFF);
buffer[position++] = (byte) ((value >> 16) & 0xFF);
buffer[position++] = (byte) ((value >> 24) & 0xFF);
totalBytesWritten += FIXED32_SIZE;
}
/**
* This method does not perform bounds checking on the array. Checking array bounds is the
* responsibility of the caller.
*/
final void bufferFixed64NoTag(long value) {
buffer[position++] = (byte) (value & 0xFF);
buffer[position++] = (byte) ((value >> 8) & 0xFF);
buffer[position++] = (byte) ((value >> 16) & 0xFF);
buffer[position++] = (byte) ((value >> 24) & 0xFF);
buffer[position++] = (byte) ((int) (value >> 32) & 0xFF);
buffer[position++] = (byte) ((int) (value >> 40) & 0xFF);
buffer[position++] = (byte) ((int) (value >> 48) & 0xFF);
buffer[position++] = (byte) ((int) (value >> 56) & 0xFF);
totalBytesWritten += FIXED64_SIZE;
}
}
/**
* A {@link CodedOutputStream} that decorates a {@link ByteOutput}. It internal buffer only to
* support string encoding operations. All other writes are just passed through to the
* {@link ByteOutput}.
*/
private static final class ByteOutputEncoder extends AbstractBufferedEncoder {
private final ByteOutput out;
ByteOutputEncoder(ByteOutput out, int bufferSize) {
super(bufferSize);
if (out == null) {
throw new NullPointerException("out");
}
this.out = out;
}
@Override
public void writeTag(final int fieldNumber, final int wireType) throws IOException {
writeUInt32NoTag(WireFormat.makeTag(fieldNumber, wireType));
}
@Override
public void writeInt32(final int fieldNumber, final int value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE * 2);
bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
bufferInt32NoTag(value);
}
@Override
public void writeUInt32(final int fieldNumber, final int value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE * 2);
bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
bufferUInt32NoTag(value);
}
@Override
public void writeFixed32(final int fieldNumber, final int value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE + FIXED32_SIZE);
bufferTag(fieldNumber, WireFormat.WIRETYPE_FIXED32);
bufferFixed32NoTag(value);
}
@Override
public void writeUInt64(final int fieldNumber, final long value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE * 2);
bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
bufferUInt64NoTag(value);
}
@Override
public void writeFixed64(final int fieldNumber, final long value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE + FIXED64_SIZE);
bufferTag(fieldNumber, WireFormat.WIRETYPE_FIXED64);
bufferFixed64NoTag(value);
}
@Override
public void writeBool(final int fieldNumber, final boolean value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE + 1);
bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
buffer((byte) (value ? 1 : 0));
}
@Override
public void writeString(final int fieldNumber, final String value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeStringNoTag(value);
}
@Override
public void writeBytes(final int fieldNumber, final ByteString value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeBytesNoTag(value);
}
@Override
public void writeByteArray(final int fieldNumber, final byte[] value) throws IOException {
writeByteArray(fieldNumber, value, 0, value.length);
}
@Override
public void writeByteArray(
final int fieldNumber, final byte[] value, final int offset, final int length)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeByteArrayNoTag(value, offset, length);
}
@Override
public void writeByteBuffer(final int fieldNumber, final ByteBuffer value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeUInt32NoTag(value.capacity());
writeRawBytes(value);
}
@Override
public void writeBytesNoTag(final ByteString value) throws IOException {
writeUInt32NoTag(value.size());
value.writeTo(this);
}
@Override
public void writeByteArrayNoTag(final byte[] value, int offset, int length) throws IOException {
writeUInt32NoTag(length);
write(value, offset, length);
}
@Override
public void writeRawBytes(final ByteBuffer value) throws IOException {
if (value.hasArray()) {
write(value.array(), value.arrayOffset(), value.capacity());
} else {
ByteBuffer duplicated = value.duplicate();
duplicated.clear();
write(duplicated);
}
}
@Override
public void writeMessage(final int fieldNumber, final MessageLite value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeMessageNoTag(value);
}
@Override
public void writeMessageSetExtension(final int fieldNumber, final MessageLite value)
throws IOException {
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP);
writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber);
writeMessage(WireFormat.MESSAGE_SET_MESSAGE, value);
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP);
}
@Override
public void writeRawMessageSetExtension(final int fieldNumber, final ByteString value)
throws IOException {
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP);
writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber);
writeBytes(WireFormat.MESSAGE_SET_MESSAGE, value);
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP);
}
@Override
public void writeMessageNoTag(final MessageLite value) throws IOException {
writeUInt32NoTag(value.getSerializedSize());
value.writeTo(this);
}
@Override
public void write(byte value) throws IOException {
if (position == limit) {
doFlush();
}
buffer(value);
}
@Override
public void writeInt32NoTag(int value) throws IOException {
if (value >= 0) {
writeUInt32NoTag(value);
} else {
// Must sign-extend.
writeUInt64NoTag(value);
}
}
@Override
public void writeUInt32NoTag(int value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE);
bufferUInt32NoTag(value);
}
@Override
public void writeFixed32NoTag(final int value) throws IOException {
flushIfNotAvailable(FIXED32_SIZE);
bufferFixed32NoTag(value);
}
@Override
public void writeUInt64NoTag(long value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE);
bufferUInt64NoTag(value);
}
@Override
public void writeFixed64NoTag(final long value) throws IOException {
flushIfNotAvailable(FIXED64_SIZE);
bufferFixed64NoTag(value);
}
@Override
public void writeStringNoTag(String value) throws IOException {
// UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()),
// and at most 3 times of it. We take advantage of this in both branches below.
final int maxLength = value.length() * Utf8.MAX_BYTES_PER_CHAR;
final int maxLengthVarIntSize = computeUInt32SizeNoTag(maxLength);
// If we are streaming and the potential length is too big to fit in our buffer, we take the
// slower path.
if (maxLengthVarIntSize + maxLength > limit) {
// Allocate a byte[] that we know can fit the string and encode into it. String.getBytes()
// does the same internally and then does *another copy* to return a byte[] of exactly the
// right size. We can skip that copy and just writeRawBytes up to the actualLength of the
// UTF-8 encoded bytes.
final byte[] encodedBytes = new byte[maxLength];
int actualLength = Utf8.encode(value, encodedBytes, 0, maxLength);
writeUInt32NoTag(actualLength);
writeLazy(encodedBytes, 0, actualLength);
return;
}
// Fast path: we have enough space available in our buffer for the string...
if (maxLengthVarIntSize + maxLength > limit - position) {
// Flush to free up space.
doFlush();
}
final int oldPosition = position;
try {
// Optimize for the case where we know this length results in a constant varint length as
// this saves a pass for measuring the length of the string.
final int minLengthVarIntSize = computeUInt32SizeNoTag(value.length());
if (minLengthVarIntSize == maxLengthVarIntSize) {
position = oldPosition + minLengthVarIntSize;
int newPosition = Utf8.encode(value, buffer, position, limit - position);
// Since this class is stateful and tracks the position, we rewind and store the state,
// prepend the length, then reset it back to the end of the string.
position = oldPosition;
int length = newPosition - oldPosition - minLengthVarIntSize;
bufferUInt32NoTag(length);
position = newPosition;
totalBytesWritten += length;
} else {
int length = Utf8.encodedLength(value);
bufferUInt32NoTag(length);
position = Utf8.encode(value, buffer, position, length);
totalBytesWritten += length;
}
} catch (UnpairedSurrogateException e) {
// Roll back the change and convert to an IOException.
totalBytesWritten -= position - oldPosition;
position = oldPosition;
// TODO(nathanmittler): We should throw an IOException here instead.
inefficientWriteStringNoTag(value, e);
} catch (IndexOutOfBoundsException e) {
throw new OutOfSpaceException(e);
}
}
@Override
public void flush() throws IOException {
if (position > 0) {
// Flush the buffer.
doFlush();
}
}
@Override
public void write(byte[] value, int offset, int length) throws IOException {
flush();
out.write(value, offset, length);
totalBytesWritten += length;
}
@Override
public void writeLazy(byte[] value, int offset, int length) throws IOException {
flush();
out.writeLazy(value, offset, length);
totalBytesWritten += length;
}
@Override
public void write(ByteBuffer value) throws IOException {
flush();
int length = value.remaining();
out.write(value);
totalBytesWritten += length;
}
@Override
public void writeLazy(ByteBuffer value) throws IOException {
flush();
int length = value.remaining();
out.writeLazy(value);
totalBytesWritten += length;
}
private void flushIfNotAvailable(int requiredSize) throws IOException {
if (limit - position < requiredSize) {
doFlush();
}
}
private void doFlush() throws IOException {
out.write(buffer, 0, position);
position = 0;
}
}
/**
* An {@link CodedOutputStream} that decorates an {@link OutputStream}. It performs internal
* buffering to optimize writes to the {@link OutputStream}.
*/
private static final class OutputStreamEncoder extends AbstractBufferedEncoder {
private final OutputStream out;
OutputStreamEncoder(OutputStream out, int bufferSize) {
super(bufferSize);
if (out == null) {
throw new NullPointerException("out");
}
this.out = out;
}
@Override
public void writeTag(final int fieldNumber, final int wireType) throws IOException {
writeUInt32NoTag(WireFormat.makeTag(fieldNumber, wireType));
}
@Override
public void writeInt32(final int fieldNumber, final int value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE * 2);
bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
bufferInt32NoTag(value);
}
@Override
public void writeUInt32(final int fieldNumber, final int value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE * 2);
bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
bufferUInt32NoTag(value);
}
@Override
public void writeFixed32(final int fieldNumber, final int value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE + FIXED32_SIZE);
bufferTag(fieldNumber, WireFormat.WIRETYPE_FIXED32);
bufferFixed32NoTag(value);
}
@Override
public void writeUInt64(final int fieldNumber, final long value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE * 2);
bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
bufferUInt64NoTag(value);
}
@Override
public void writeFixed64(final int fieldNumber, final long value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE + FIXED64_SIZE);
bufferTag(fieldNumber, WireFormat.WIRETYPE_FIXED64);
bufferFixed64NoTag(value);
}
@Override
public void writeBool(final int fieldNumber, final boolean value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE + 1);
bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
buffer((byte) (value ? 1 : 0));
}
@Override
public void writeString(final int fieldNumber, final String value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeStringNoTag(value);
}
@Override
public void writeBytes(final int fieldNumber, final ByteString value) throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeBytesNoTag(value);
}
@Override
public void writeByteArray(final int fieldNumber, final byte[] value) throws IOException {
writeByteArray(fieldNumber, value, 0, value.length);
}
@Override
public void writeByteArray(
final int fieldNumber, final byte[] value, final int offset, final int length)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeByteArrayNoTag(value, offset, length);
}
@Override
public void writeByteBuffer(final int fieldNumber, final ByteBuffer value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeUInt32NoTag(value.capacity());
writeRawBytes(value);
}
@Override
public void writeBytesNoTag(final ByteString value) throws IOException {
writeUInt32NoTag(value.size());
value.writeTo(this);
}
@Override
public void writeByteArrayNoTag(final byte[] value, int offset, int length) throws IOException {
writeUInt32NoTag(length);
write(value, offset, length);
}
@Override
public void writeRawBytes(final ByteBuffer value) throws IOException {
if (value.hasArray()) {
write(value.array(), value.arrayOffset(), value.capacity());
} else {
ByteBuffer duplicated = value.duplicate();
duplicated.clear();
write(duplicated);
}
}
@Override
public void writeMessage(final int fieldNumber, final MessageLite value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeMessageNoTag(value);
}
@Override
public void writeMessageSetExtension(final int fieldNumber, final MessageLite value)
throws IOException {
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP);
writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber);
writeMessage(WireFormat.MESSAGE_SET_MESSAGE, value);
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP);
}
@Override
public void writeRawMessageSetExtension(final int fieldNumber, final ByteString value)
throws IOException {
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP);
writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber);
writeBytes(WireFormat.MESSAGE_SET_MESSAGE, value);
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP);
}
@Override
public void writeMessageNoTag(final MessageLite value) throws IOException {
writeUInt32NoTag(value.getSerializedSize());
value.writeTo(this);
}
@Override
public void write(byte value) throws IOException {
if (position == limit) {
doFlush();
}
buffer(value);
}
@Override
public void writeInt32NoTag(int value) throws IOException {
if (value >= 0) {
writeUInt32NoTag(value);
} else {
// Must sign-extend.
writeUInt64NoTag(value);
}
}
@Override
public void writeUInt32NoTag(int value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE);
bufferUInt32NoTag(value);
}
@Override
public void writeFixed32NoTag(final int value) throws IOException {
flushIfNotAvailable(FIXED32_SIZE);
bufferFixed32NoTag(value);
}
@Override
public void writeUInt64NoTag(long value) throws IOException {
flushIfNotAvailable(MAX_VARINT_SIZE);
bufferUInt64NoTag(value);
}
@Override
public void writeFixed64NoTag(final long value) throws IOException {
flushIfNotAvailable(FIXED64_SIZE);
bufferFixed64NoTag(value);
}
@Override
public void writeStringNoTag(String value) throws IOException {
try {
// UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()),
// and at most 3 times of it. We take advantage of this in both branches below.
final int maxLength = value.length() * Utf8.MAX_BYTES_PER_CHAR;
final int maxLengthVarIntSize = computeUInt32SizeNoTag(maxLength);
// If we are streaming and the potential length is too big to fit in our buffer, we take the
// slower path.
if (maxLengthVarIntSize + maxLength > limit) {
// Allocate a byte[] that we know can fit the string and encode into it. String.getBytes()
// does the same internally and then does *another copy* to return a byte[] of exactly the
// right size. We can skip that copy and just writeRawBytes up to the actualLength of the
// UTF-8 encoded bytes.
final byte[] encodedBytes = new byte[maxLength];
int actualLength = Utf8.encode(value, encodedBytes, 0, maxLength);
writeUInt32NoTag(actualLength);
writeLazy(encodedBytes, 0, actualLength);
return;
}
// Fast path: we have enough space available in our buffer for the string...
if (maxLengthVarIntSize + maxLength > limit - position) {
// Flush to free up space.
doFlush();
}
// Optimize for the case where we know this length results in a constant varint length as
// this saves a pass for measuring the length of the string.
final int minLengthVarIntSize = computeUInt32SizeNoTag(value.length());
int oldPosition = position;
final int length;
try {
if (minLengthVarIntSize == maxLengthVarIntSize) {
position = oldPosition + minLengthVarIntSize;
int newPosition = Utf8.encode(value, buffer, position, limit - position);
// Since this class is stateful and tracks the position, we rewind and store the
// state, prepend the length, then reset it back to the end of the string.
position = oldPosition;
length = newPosition - oldPosition - minLengthVarIntSize;
bufferUInt32NoTag(length);
position = newPosition;
} else {
length = Utf8.encodedLength(value);
bufferUInt32NoTag(length);
position = Utf8.encode(value, buffer, position, length);
}
totalBytesWritten += length;
} catch (UnpairedSurrogateException e) {
// Be extra careful and restore the original position for retrying the write with the
// less efficient path.
totalBytesWritten -= position - oldPosition;
position = oldPosition;
throw e;
} catch (ArrayIndexOutOfBoundsException e) {
throw new OutOfSpaceException(e);
}
} catch (UnpairedSurrogateException e) {
inefficientWriteStringNoTag(value, e);
}
}
@Override
public void flush() throws IOException {
if (position > 0) {
// Flush the buffer.
doFlush();
}
}
@Override
public void write(byte[] value, int offset, int length)
throws IOException {
if (limit - position >= length) {
// We have room in the current buffer.
System.arraycopy(value, offset, buffer, position, length);
position += length;
totalBytesWritten += length;
} else {
// Write extends past current buffer. Fill the rest of this buffer and
// flush.
final int bytesWritten = limit - position;
System.arraycopy(value, offset, buffer, position, bytesWritten);
offset += bytesWritten;
length -= bytesWritten;
position = limit;
totalBytesWritten += bytesWritten;
doFlush();
// Now deal with the rest.
// Since we have an output stream, this is our buffer
// and buffer offset == 0
if (length <= limit) {
// Fits in new buffer.
System.arraycopy(value, offset, buffer, 0, length);
position = length;
} else {
// Write is very big. Let's do it all at once.
out.write(value, offset, length);
}
totalBytesWritten += length;
}
}
@Override
public void writeLazy(byte[] value, int offset, int length) throws IOException {
write(value, offset, length);
}
@Override
public void write(ByteBuffer value) throws IOException {
int length = value.remaining();
if (limit - position >= length) {
// We have room in the current buffer.
value.get(buffer, position, length);
position += length;
totalBytesWritten += length;
} else {
// Write extends past current buffer. Fill the rest of this buffer and
// flush.
final int bytesWritten = limit - position;
value.get(buffer, position, bytesWritten);
length -= bytesWritten;
position = limit;
totalBytesWritten += bytesWritten;
doFlush();
// Now deal with the rest.
// Since we have an output stream, this is our buffer
// and buffer offset == 0
while (length > limit) {
// Copy data into the buffer before writing it to OutputStream.
value.get(buffer, 0, limit);
out.write(buffer, 0, limit);
length -= limit;
totalBytesWritten += limit;
}
value.get(buffer, 0, length);
position = length;
totalBytesWritten += length;
}
}
@Override
public void writeLazy(ByteBuffer value) throws IOException {
write(value);
}
private void flushIfNotAvailable(int requiredSize) throws IOException {
if (limit - position < requiredSize) {
doFlush();
}
}
private void doFlush() throws IOException {
out.write(buffer, 0, position);
position = 0;
}
}
}