All Downloads are FREE. Search and download functionalities are using the official Maven repository.

panda.image.JavaGraphics Maven / Gradle / Ivy

package panda.image;

import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.GraphicsConfiguration;
import java.awt.GraphicsEnvironment;
import java.awt.RenderingHints;
import java.awt.Transparency;
import java.awt.image.BufferedImage;
import java.awt.image.ColorModel;
import java.awt.image.Raster;
import java.awt.image.WritableRaster;
import java.io.IOException;
import java.net.URL;

import javax.imageio.ImageIO;

/**
 * 

* a set of tools to perform common graphics operations * easily. These operations are divided into several themes, listed below. *

*

Compatible Images

*

* Compatible images can, and should, be used to increase drawing performance. This class provides a * number of methods to load compatible images directly from files or to convert existing images to * compatibles images. *

*

Creating Thumbnails

*

* This class provides a number of methods to easily scale down images. Some of these methods offer * a trade-off between speed and result quality and shouuld be used all the time. They also offer * the advantage of producing compatible images, thus automatically resulting into better runtime * performance. *

*

* All these methodes are both faster than {@link java.awt.Image#getScaledInstance(int, int, int)} * and produce better-looking results than the various drawImage() methods in * {@link java.awt.Graphics}, which can be used for image scaling. *

*

Image Manipulation

*

* This class provides two methods to get and set pixels in a buffered image. These methods try to * avoid unmanaging the image in order to keep good performance. *

* */ public abstract class JavaGraphics { // Returns the graphics configuration for the primary screen private static GraphicsConfiguration getGraphicsConfiguration() { return GraphicsEnvironment.getLocalGraphicsEnvironment().getDefaultScreenDevice() .getDefaultConfiguration(); } private static boolean isHeadless() { return GraphicsEnvironment.isHeadless(); } /** *

* Returns a new BufferedImage using the same color model as the image passed as a * parameter. The returned image is only compatible with the image passed as a parameter. This * does not mean the returned image is compatible with the hardware. *

* * @param image the reference image from which the color model of the new image is obtained * @return a new BufferedImage, compatible with the color model of * image */ public static BufferedImage createColorModelCompatibleImage(BufferedImage image) { ColorModel cm = image.getColorModel(); return new BufferedImage(cm, cm.createCompatibleWritableRaster(image.getWidth(), image .getHeight()), cm.isAlphaPremultiplied(), null); } /** *

* Returns a new compatible image with the same width, height and transparency as the image * specified as a parameter. That is, the returned BufferedImage will be compatible with the * graphics hardware. If this method is called in a headless environment, then the returned * BufferedImage will be compatible with the source image. *

* * @see java.awt.Transparency * @see #createCompatibleImage(int, int) * @see #createCompatibleImage(java.awt.image.BufferedImage, int, int) * @see #createCompatibleTranslucentImage(int, int) * @see #loadCompatibleImage(java.net.URL) * @see #toCompatibleImage(java.awt.image.BufferedImage) * @param image the reference image from which the dimension and the transparency of the new * image are obtained * @return a new compatible BufferedImage with the same dimension and transparency * as image */ public static BufferedImage createCompatibleImage(BufferedImage image) { return createCompatibleImage(image, image.getWidth(), image.getHeight()); } /** *

* Returns a new compatible image of the specified width and height, and the same transparency * setting as the image specified as a parameter. That is, the returned * BufferedImage is compatible with the graphics hardware. If the method is called * in a headless environment, then the returned BufferedImage will be compatible with the source * image. *

* * @see java.awt.Transparency * @see #createCompatibleImage(java.awt.image.BufferedImage) * @see #createCompatibleImage(int, int) * @see #createCompatibleTranslucentImage(int, int) * @see #loadCompatibleImage(java.net.URL) * @see #toCompatibleImage(java.awt.image.BufferedImage) * @param width the width of the new image * @param height the height of the new image * @param image the reference image from which the transparency of the new image is obtained * @return a new compatible BufferedImage with the same transparency as * image and the specified dimension */ public static BufferedImage createCompatibleImage(BufferedImage image, int width, int height) { return isHeadless() ? new BufferedImage(width, height, image.getType()) : getGraphicsConfiguration() .createCompatibleImage(width, height, image.getTransparency()); } /** *

* Returns a new opaque compatible image of the specified width and height. That is, the * returned BufferedImage is compatible with the graphics hardware. If the method * is called in a headless environment, then the returned BufferedImage will be compatible with * the source image. *

* * @see #createCompatibleImage(java.awt.image.BufferedImage) * @see #createCompatibleImage(java.awt.image.BufferedImage, int, int) * @see #createCompatibleTranslucentImage(int, int) * @see #loadCompatibleImage(java.net.URL) * @see #toCompatibleImage(java.awt.image.BufferedImage) * @param width the width of the new image * @param height the height of the new image * @return a new opaque compatible BufferedImage of the specified width and height */ public static BufferedImage createCompatibleImage(int width, int height) { return isHeadless() ? new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB) : getGraphicsConfiguration().createCompatibleImage(width, height); } /** *

* Returns a new translucent compatible image of the specified width and height. That is, the * returned BufferedImage is compatible with the graphics hardware. If the method * is called in a headless environment, then the returned BufferedImage will be compatible with * the source image. *

* * @see #createCompatibleImage(java.awt.image.BufferedImage) * @see #createCompatibleImage(java.awt.image.BufferedImage, int, int) * @see #createCompatibleImage(int, int) * @see #loadCompatibleImage(java.net.URL) * @see #toCompatibleImage(java.awt.image.BufferedImage) * @param width the width of the new image * @param height the height of the new image * @return a new translucent compatible BufferedImage of the specified width and * height */ public static BufferedImage createCompatibleTranslucentImage(int width, int height) { return isHeadless() ? new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB) : getGraphicsConfiguration() .createCompatibleImage(width, height, Transparency.TRANSLUCENT); } /** *

* Returns a new compatible image from a URL. The image is loaded from the specified location * and then turned, if necessary into a compatible image. *

* * @see #createCompatibleImage(java.awt.image.BufferedImage) * @see #createCompatibleImage(java.awt.image.BufferedImage, int, int) * @see #createCompatibleImage(int, int) * @see #createCompatibleTranslucentImage(int, int) * @see #toCompatibleImage(java.awt.image.BufferedImage) * @param resource the URL of the picture to load as a compatible image * @return a new translucent compatible BufferedImage of the specified width and * height * @throws java.io.IOException if the image cannot be read or loaded */ public static BufferedImage loadCompatibleImage(URL resource) throws IOException { BufferedImage image = ImageIO.read(resource); return toCompatibleImage(image); } /** *

* Return a new compatible image that contains a copy of the specified image. This method * ensures an image is compatible with the hardware, and therefore optimized for fast blitting * operations. *

*

* If the method is called in a headless environment, then the returned * BufferedImage will be the source image. *

* * @see #createCompatibleImage(java.awt.image.BufferedImage) * @see #createCompatibleImage(java.awt.image.BufferedImage, int, int) * @see #createCompatibleImage(int, int) * @see #createCompatibleTranslucentImage(int, int) * @see #loadCompatibleImage(java.net.URL) * @param image the image to copy into a new compatible image * @return a new compatible copy, with the same width and height and transparency and content, * of image */ public static BufferedImage toCompatibleImage(BufferedImage image) { if (isHeadless()) { return image; } if (image.getColorModel().equals(getGraphicsConfiguration().getColorModel())) { return image; } BufferedImage compatibleImage = getGraphicsConfiguration().createCompatibleImage( image.getWidth(), image.getHeight(), image.getTransparency()); Graphics g = compatibleImage.getGraphics(); g.drawImage(image, 0, 0, null); g.dispose(); return compatibleImage; } /** *

* Returns a scaled image of a source image. newSize defines the length of the * longest dimension of the new image. The other dimension is then computed according to the * dimensions ratio of the original picture. *

*

* This method favors speed over quality. When the new size is less than half the longest * dimension of the source image, {@link #createScaledImageSlow(BufferedImage, int)} or * {@link #createScaledImageSlow(BufferedImage, int, int)} should be used instead to ensure the * quality of the result without sacrificing too much performance. *

* * @see #createScaledImage(java.awt.image.BufferedImage, int, int) * @see #createScaledImageSlow(java.awt.image.BufferedImage, int) * @see #createScaledImageSlow(java.awt.image.BufferedImage, int, int) * @param image the source image * @param newSize the length of the largest dimension * @return a new compatible BufferedImage * @throws IllegalArgumentException if newSize is <= 0 */ public static BufferedImage createScaledImage(BufferedImage image, int newSize) { if (newSize <= 0) { throw new IllegalArgumentException("new size must be greater than 0"); } int width = image.getWidth(); int height = image.getHeight(); if (width > height) { if (newSize == width) { return image; } float ratio = (float)width / (float)height; width = newSize; height = (int)(width / ratio); } else { if (newSize == height) { return image; } float ratio = (float)height / (float)width; height = newSize; width = (int)(height / ratio); } BufferedImage temp = createCompatibleImage(image, width, height); Graphics2D g2 = temp.createGraphics(); // g2.setComposite(AlphaComposite.Src); g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); g2.drawImage(image, 0, 0, temp.getWidth(), temp.getHeight(), null); g2.dispose(); return temp; } /** *

* Returns a scaled image of a source image. (ratio keeped) *

* * @param image the source image * @param newWidth the width of the scaled image * @param newHeight the height of the scaled image * @return a new compatible BufferedImage containing a scaled image * @see #createScaledImage(java.awt.image.BufferedImage, int, int, boolean) */ public static BufferedImage createScaledImage(BufferedImage image, int newWidth, int newHeight) { return createScaledImage(image, newWidth, newHeight, true); } /** *

* Returns a scaled image of a source image. *

*

* This method favors speed over quality. When the new size is less than half the longest * dimension of the source image, {@link #createScaledImageSlow(BufferedImage, int)} or * {@link #createScaledImageSlow(BufferedImage, int, int)} should be used instead to ensure the * quality of the result without sacrificing too much performance. *

* * @see #createScaledImage(java.awt.image.BufferedImage, int) * @see #createScaledImageSlow(java.awt.image.BufferedImage, int) * @see #createScaledImageSlow(java.awt.image.BufferedImage, int, int) * @param image the source image * @param newWidth the width of the scaled image * @param newHeight the height of the scaled image * @param keepRatio keep ratio of image * @return a new compatible BufferedImage containing a scaled image * @throws IllegalArgumentException if newWidth is <= 0 and * newHeight is <= 0 */ public static BufferedImage createScaledImage(BufferedImage image, int newWidth, int newHeight, boolean keepRatio) { if (newWidth <= 0 && newHeight <= 0) { throw new IllegalArgumentException("new width/height must be greater than 0"); } if (newWidth == image.getWidth() && newHeight == image.getHeight()) { return image; } int width = image.getWidth(); int height = image.getHeight(); if (newHeight <= 0) { if (newWidth == width) { return image; } float ratio = (float)width / (float)height; newHeight = (int)(newWidth / ratio); } else if (newWidth <= 0) { if (newHeight == height) { return image; } float ratio = (float)height / (float)width; newWidth = (int)(newHeight / ratio); } else if (keepRatio) { float ratiow = (float)newWidth / (float)width; float ratioh = (float)newHeight / (float)height; if (ratiow < ratioh) { newWidth = (int)(width * ratiow); } else if (ratioh < ratiow) { newHeight = (int)(height * ratioh); } } BufferedImage temp = createCompatibleImage(image, newWidth, newHeight); Graphics2D g2 = temp.createGraphics(); g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); g2.drawImage(image, 0, 0, temp.getWidth(), temp.getHeight(), null); g2.dispose(); return temp; } public static boolean isTransparency(BufferedImage image) { return image.getTransparency() != Transparency.OPAQUE; } /** *

* Returns a scaled image of a source image. newSize defines the length of the * longest dimension of the scaled image. The other dimension is then computed according to the * dimensions ratio of the original picture. *

*

* This method offers a good trade-off between speed and quality. The result looks better than * {@link #createScaledImage(java.awt.image.BufferedImage, int)} when the new size is less than * half the longest dimension of the source image, yet the rendering speed is almost similar. *

* * @see #createScaledImage(java.awt.image.BufferedImage, int, int) * @see #createScaledImage(java.awt.image.BufferedImage, int) * @see #createScaledImageSlow(java.awt.image.BufferedImage, int, int) * @param image the source image * @param newSize the length of the largest dimension of the scaled image * @return a new compatible BufferedImage containing a scaled image of * image * @throws IllegalArgumentException if newSize is <= 0 */ public static BufferedImage createScaledImageSlow(BufferedImage image, int newSize) { if (newSize <= 0) { throw new IllegalArgumentException("new size must be greater than 0"); } int width = image.getWidth(); int height = image.getHeight(); float ratio; boolean expand = false; boolean widther = width > height; if (widther) { if (newSize == width) { return image; } if (newSize > width) { expand = true; } ratio = (float)width / (float)height; } else { if (newSize == height) { return image; } if (newSize > height) { expand = true; } ratio = (float)height / (float)width; } boolean transparent = isTransparency(image); BufferedImage scale = image; BufferedImage temp = null; Graphics2D g2 = null; int previousWidth = width; int previousHeight = height; do { if (widther) { if (expand) { width *= 2; if (width > newSize) { width = newSize; } } else { width /= 2; if (width < newSize) { width = newSize; } } height = (int)(width / ratio); } else { if (expand) { height *= 2; if (height > newSize) { height = newSize; } } else { height /= 2; if (height < newSize) { height = newSize; } } width = (int)(height / ratio); } if (temp == null || transparent) { temp = createCompatibleImage(image, width, height); g2 = temp.createGraphics(); g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); } g2.drawImage(scale, 0, 0, width, height, 0, 0, previousWidth, previousHeight, null); previousWidth = width; previousHeight = height; scale = temp; } while (newSize != (widther ? width : height)); g2.dispose(); if (width != scale.getWidth() || height != scale.getHeight()) { temp = createCompatibleImage(image, width, height); g2 = temp.createGraphics(); g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); g2.drawImage(scale, 0, 0, width, height, 0, 0, width, height, null); g2.dispose(); scale = temp; } return scale; } /** *

* Returns a scaled image (ratio keep) of a source image. *

* * @param image the source image * @param newWidth the width of the scaled image * @param newHeight the height of the scaled image * @return a new compatible BufferedImage containing a scaled image of * image * @see #createScaledImageSlow(java.awt.image.BufferedImage, int, int, boolean) */ public static BufferedImage createScaledImageSlow(BufferedImage image, int newWidth, int newHeight) { return createScaledImageSlow(image, newWidth, newHeight, true); } /** *

* Returns a scaled image of a source image. *

*

* This method offers a good trade-off between speed and quality. The result looks better than * {@link #createScaledImage(java.awt.image.BufferedImage, int)} when the new size is less than * half the longest dimension of the source image, yet the rendering speed is almost similar. *

* * @see #createScaledImage(java.awt.image.BufferedImage, int) * @see #createScaledImage(java.awt.image.BufferedImage, int, int) * @see #createScaledImageSlow(java.awt.image.BufferedImage, int) * @param image the source image * @param newWidth the width of the scaled image * @param newHeight the height of the scaled image * @param keepRatio keep ratio of image * @return a new compatible BufferedImage containing a scaled image of * image * @throws IllegalArgumentException if newWidth is <= 0 or if * code>newHeight
is <= 0 */ public static BufferedImage createScaledImageSlow(BufferedImage image, int newWidth, int newHeight, boolean keepRatio) { if (newWidth <= 0 && newHeight <= 0) { throw new IllegalArgumentException("new width/height must be greater than 0"); } if (newWidth == image.getWidth() && newHeight == image.getHeight()) { return image; } int width = image.getWidth(); int height = image.getHeight(); if (newHeight <= 0) { if (newWidth == width) { return image; } float ratio = (float)width / (float)height; newHeight = (int)(newWidth / ratio); } else if (newWidth <= 0) { if (newHeight == height) { return image; } float ratio = (float)height / (float)width; newWidth = (int)(newHeight / ratio); } else if (keepRatio) { float ratiow = (float)newWidth / (float)width; float ratioh = (float)newHeight / (float)height; if (ratiow < ratioh) { newWidth = (int)(width * ratiow); } else if (ratioh < ratiow) { newHeight = (int)(height * ratioh); } } boolean transparent = isTransparency(image); boolean wexpand = newWidth > width; boolean hexpand = newHeight > height; BufferedImage scale = image; BufferedImage temp = null; Graphics2D g2 = null; int previousWidth = width; int previousHeight = height; do { if (wexpand) { if (width < newWidth) { width *= 2; if (width > newWidth) { width = newWidth; } } } else { if (width > newWidth) { width /= 2; if (width < newWidth) { width = newWidth; } } } if (hexpand) { if (height < newHeight) { height *= 2; if (height > newHeight) { height = newHeight; } } } else { if (height > newHeight) { height /= 2; if (height < newHeight) { height = newHeight; } } } if (temp == null || transparent) { temp = createCompatibleImage(image, width, height); g2 = temp.createGraphics(); g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); } g2.drawImage(scale, 0, 0, width, height, 0, 0, previousWidth, previousHeight, null); previousWidth = width; previousHeight = height; scale = temp; } while (width != newWidth || height != newHeight); g2.dispose(); if (width != scale.getWidth() || height != scale.getHeight()) { temp = createCompatibleImage(image, width, height); g2 = temp.createGraphics(); g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); g2.drawImage(scale, 0, 0, width, height, 0, 0, width, height, null); g2.dispose(); scale = temp; } return scale; } /** *

* Returns an array of pixels, stored as integers, from a BufferedImage. The pixels * are grabbed from a rectangular area defined by a location and two dimensions. Calling this * method on an image of type different from BufferedImage.TYPE_INT_ARGB and * BufferedImage.TYPE_INT_RGB will unmanage the image. *

* * @param img the source image * @param x the x location at which to start grabbing pixels * @param y the y location at which to start grabbing pixels * @param w the width of the rectangle of pixels to grab * @param h the height of the rectangle of pixels to grab * @param pixels a pre-allocated array of pixels of size w*h; can be null * @return pixels if non-null, a new array of integers otherwise * @throws IllegalArgumentException is pixels is non-null and of length < w*h */ public static int[] getPixels(BufferedImage img, int x, int y, int w, int h, int[] pixels) { if (w == 0 || h == 0) { return new int[0]; } if (pixels == null) { pixels = new int[w * h]; } else if (pixels.length < w * h) { throw new IllegalArgumentException("pixels array must have a length" + " >= w*h"); } int imageType = img.getType(); if (imageType == BufferedImage.TYPE_INT_ARGB || imageType == BufferedImage.TYPE_INT_RGB) { Raster raster = img.getRaster(); return (int[])raster.getDataElements(x, y, w, h, pixels); } // Unmanages the image return img.getRGB(x, y, w, h, pixels, 0, w); } /** *

* Writes a rectangular area of pixels in the destination BufferedImage. Calling * this method on an image of type different from BufferedImage.TYPE_INT_ARGB and * BufferedImage.TYPE_INT_RGB will unmanage the image. *

* * @param img the destination image * @param x the x location at which to start storing pixels * @param y the y location at which to start storing pixels * @param w the width of the rectangle of pixels to store * @param h the height of the rectangle of pixels to store * @param pixels an array of pixels, stored as integers * @throws IllegalArgumentException is pixels is non-null and of length < w*h */ public static void setPixels(BufferedImage img, int x, int y, int w, int h, int[] pixels) { if (pixels == null || w == 0 || h == 0) { return; } else if (pixels.length < w * h) { throw new IllegalArgumentException("pixels array must have a length" + " >= w*h"); } int imageType = img.getType(); if (imageType == BufferedImage.TYPE_INT_ARGB || imageType == BufferedImage.TYPE_INT_RGB) { WritableRaster raster = img.getRaster(); raster.setDataElements(x, y, w, h, pixels); } else { // Unmanages the image img.setRGB(x, y, w, h, pixels, 0, w); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy