All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.redwheelbarrow.Obsidian Maven / Gradle / Ivy

The newest version!
/*
 * Diff Match and Patch
 *
 * Copyright 2006 Google Inc.
 * http://code.google.com/p/google-diff-match-patch/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.github.redwheelbarrow;

import java.io.UnsupportedEncodingException;
import java.net.URLEncoder;
import java.net.URLDecoder;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;
import java.util.Map;
import java.util.Stack;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

/*
 * Functions for diff, match and patch.
 * Computes the difference between two texts to create a patch.
 * Applies the patch onto another text, allowing for errors.
 *
 * @author [email protected] (Neil Fraser)
 */

/**
 * Class containing the diff, match and patch methods.
 * Also contains the behaviour settings.
 */
public class Obsidian {

  // Defaults.
  // Set these on your diff_match_patch instance to override the defaults.

  /**
   * Number of seconds to map a diff before giving up (0 for infinity).
   */
  public float Diff_Timeout = 1.0f;
  /**
   * Cost of an empty edit operation in terms of edit characters.
   */
  public short Diff_EditCost = 4;
  /**
   * At what point is no match declared (0.0 = perfection, 1.0 = very loose).
   */
  public float Match_Threshold = 0.5f;
  /**
   * How far to search for a match (0 = exact location, 1000+ = broad match).
   * A match this many characters away from the expected location will add
   * 1.0 to the score (0.0 is a perfect match).
   */
  public int Match_Distance = 1000;
  /**
   * When deleting a large block of text (over ~64 characters), how close do
   * the contents have to be to match the expected contents. (0.0 = perfection,
   * 1.0 = very loose).  Note that Match_Threshold controls how closely the
   * end points of a delete need to match.
   */
  public float Patch_DeleteThreshold = 0.5f;
  /**
   * Chunk size for context length.
   */
  public short Patch_Margin = 4;

  /**
   * The number of bits in an int.
   */
  private short Match_MaxBits = 32;

  /**
   * Internal class for returning results from diff_linesToChars().
   * Other less paranoid languages just use a three-element array.
   */
  protected static class LinesToCharsResult {
    protected String chars1;
    protected String chars2;
    protected List lineArray;

    protected LinesToCharsResult(String chars1, String chars2,
        List lineArray) {
      this.chars1 = chars1;
      this.chars2 = chars2;
      this.lineArray = lineArray;
    }
  }


  //  DIFF FUNCTIONS


  /**
   * The data structure representing a diff is a Linked list of Diff objects:
   * {Diff(Operation.DELETE, "Hello"), Diff(Operation.INSERT, "Goodbye"),
   *  Diff(Operation.EQUAL, " world.")}
   * which means: delete "Hello", add "Goodbye" and keep " world."
   */
  public enum Operation {
    DELETE, INSERT, EQUAL
  }

  /**
   * Find the differences between two texts.
   * Run a faster, slightly less optimal diff.
   * This method allows the 'checklines' of diff_main() to be optional.
   * Most of the time checklines is wanted, so default to true.
   * @param text1 Old string to be diffed.
   * @param text2 New string to be diffed.
   * @return Linked List of Diff objects.
   */
  public LinkedList diff_main(String text1, String text2) {
    return diff_main(text1, text2, true);
  }

  /**
   * Find the differences between two texts.
   * @param text1 Old string to be diffed.
   * @param text2 New string to be diffed.
   * @param checklines Speedup flag.  If false, then don't run a
   *     line-level diff first to identify the changed areas.
   *     If true, then run a faster slightly less optimal diff.
   * @return Linked List of Diff objects.
   */
  public LinkedList diff_main(String text1, String text2,
                                    boolean checklines) {
    // Set a deadline by which time the diff must be complete.
    long deadline;
    if (Diff_Timeout <= 0) {
      deadline = Long.MAX_VALUE;
    } else {
      deadline = System.currentTimeMillis() + (long) (Diff_Timeout * 1000);
    }
    return diff_main(text1, text2, checklines, deadline);
  }

  /**
   * Find the differences between two texts.  Simplifies the problem by
   * stripping any common prefix or suffix off the texts before diffing.
   * @param text1 Old string to be diffed.
   * @param text2 New string to be diffed.
   * @param checklines Speedup flag.  If false, then don't run a
   *     line-level diff first to identify the changed areas.
   *     If true, then run a faster slightly less optimal diff.
   * @param deadline Time when the diff should be complete by.  Used
   *     internally for recursive calls.  Users should set DiffTimeout instead.
   * @return Linked List of Diff objects.
   */
  private LinkedList diff_main(String text1, String text2,
                                     boolean checklines, long deadline) {
    // Check for null inputs.
    if (text1 == null || text2 == null) {
      throw new IllegalArgumentException("Null inputs. (diff_main)");
    }

    // Check for equality (speedup).
    LinkedList diffs;
    if (text1.equals(text2)) {
      diffs = new LinkedList();
      if (text1.length() != 0) {
        diffs.add(new Diff(Operation.EQUAL, text1));
      }
      return diffs;
    }

    // Trim off common prefix (speedup).
    int commonlength = diff_commonPrefix(text1, text2);
    String commonprefix = text1.substring(0, commonlength);
    text1 = text1.substring(commonlength);
    text2 = text2.substring(commonlength);

    // Trim off common suffix (speedup).
    commonlength = diff_commonSuffix(text1, text2);
    String commonsuffix = text1.substring(text1.length() - commonlength);
    text1 = text1.substring(0, text1.length() - commonlength);
    text2 = text2.substring(0, text2.length() - commonlength);

    // Compute the diff on the middle block.
    diffs = diff_compute(text1, text2, checklines, deadline);

    // Restore the prefix and suffix.
    if (commonprefix.length() != 0) {
      diffs.addFirst(new Diff(Operation.EQUAL, commonprefix));
    }
    if (commonsuffix.length() != 0) {
      diffs.addLast(new Diff(Operation.EQUAL, commonsuffix));
    }

    diff_cleanupMerge(diffs);
    return diffs;
  }

  /**
   * Find the differences between two texts.  Assumes that the texts do not
   * have any common prefix or suffix.
   * @param text1 Old string to be diffed.
   * @param text2 New string to be diffed.
   * @param checklines Speedup flag.  If false, then don't run a
   *     line-level diff first to identify the changed areas.
   *     If true, then run a faster slightly less optimal diff.
   * @param deadline Time when the diff should be complete by.
   * @return Linked List of Diff objects.
   */
  private LinkedList diff_compute(String text1, String text2,
                                        boolean checklines, long deadline) {
    LinkedList diffs = new LinkedList();

    if (text1.length() == 0) {
      // Just add some text (speedup).
      diffs.add(new Diff(Operation.INSERT, text2));
      return diffs;
    }

    if (text2.length() == 0) {
      // Just delete some text (speedup).
      diffs.add(new Diff(Operation.DELETE, text1));
      return diffs;
    }

    String longtext = text1.length() > text2.length() ? text1 : text2;
    String shorttext = text1.length() > text2.length() ? text2 : text1;
    int i = longtext.indexOf(shorttext);
    if (i != -1) {
      // Shorter text is inside the longer text (speedup).
      Operation op = (text1.length() > text2.length()) ?
                     Operation.DELETE : Operation.INSERT;
      diffs.add(new Diff(op, longtext.substring(0, i)));
      diffs.add(new Diff(Operation.EQUAL, shorttext));
      diffs.add(new Diff(op, longtext.substring(i + shorttext.length())));
      return diffs;
    }

    if (shorttext.length() == 1) {
      // Single character string.
      // After the previous speedup, the character can't be an equality.
      diffs.add(new Diff(Operation.DELETE, text1));
      diffs.add(new Diff(Operation.INSERT, text2));
      return diffs;
    }

    // Check to see if the problem can be split in two.
    String[] hm = diff_halfMatch(text1, text2);
    if (hm != null) {
      // A half-match was found, sort out the return data.
      String text1_a = hm[0];
      String text1_b = hm[1];
      String text2_a = hm[2];
      String text2_b = hm[3];
      String mid_common = hm[4];
      // Send both pairs off for separate processing.
      LinkedList diffs_a = diff_main(text1_a, text2_a,
                                           checklines, deadline);
      LinkedList diffs_b = diff_main(text1_b, text2_b,
                                           checklines, deadline);
      // Merge the results.
      diffs = diffs_a;
      diffs.add(new Diff(Operation.EQUAL, mid_common));
      diffs.addAll(diffs_b);
      return diffs;
    }

    if (checklines && text1.length() > 100 && text2.length() > 100) {
      return diff_lineMode(text1, text2, deadline);
    }

    return diff_bisect(text1, text2, deadline);
  }

  /**
   * Do a quick line-level diff on both strings, then rediff the parts for
   * greater accuracy.
   * This speedup can produce non-minimal diffs.
   * @param text1 Old string to be diffed.
   * @param text2 New string to be diffed.
   * @param deadline Time when the diff should be complete by.
   * @return Linked List of Diff objects.
   */
  private LinkedList diff_lineMode(String text1, String text2,
                                         long deadline) {
    // Scan the text on a line-by-line basis first.
    LinesToCharsResult b = diff_linesToChars(text1, text2);
    text1 = b.chars1;
    text2 = b.chars2;
    List linearray = b.lineArray;

    LinkedList diffs = diff_main(text1, text2, false, deadline);

    // Convert the diff back to original text.
    diff_charsToLines(diffs, linearray);
    // Eliminate freak matches (e.g. blank lines)
    diff_cleanupSemantic(diffs);

    // Rediff any replacement blocks, this time character-by-character.
    // Add a dummy entry at the end.
    diffs.add(new Diff(Operation.EQUAL, ""));
    int count_delete = 0;
    int count_insert = 0;
    String text_delete = "";
    String text_insert = "";
    ListIterator pointer = diffs.listIterator();
    Diff thisDiff = pointer.next();
    while (thisDiff != null) {
      switch (thisDiff.operation) {
      case INSERT:
        count_insert++;
        text_insert += thisDiff.text;
        break;
      case DELETE:
        count_delete++;
        text_delete += thisDiff.text;
        break;
      case EQUAL:
        // Upon reaching an equality, check for prior redundancies.
        if (count_delete >= 1 && count_insert >= 1) {
          // Delete the offending records and add the merged ones.
          pointer.previous();
          for (int j = 0; j < count_delete + count_insert; j++) {
            pointer.previous();
            pointer.remove();
          }
          for (Diff newDiff : diff_main(text_delete, text_insert, false,
              deadline)) {
            pointer.add(newDiff);
          }
        }
        count_insert = 0;
        count_delete = 0;
        text_delete = "";
        text_insert = "";
        break;
      }
      thisDiff = pointer.hasNext() ? pointer.next() : null;
    }
    diffs.removeLast();  // Remove the dummy entry at the end.

    return diffs;
  }

  /**
   * Find the 'middle snake' of a diff, split the problem in two
   * and return the recursively constructed diff.
   * See Myers 1986 paper: An O(ND) Difference Algorithm and Its Variations.
   * @param text1 Old string to be diffed.
   * @param text2 New string to be diffed.
   * @param deadline Time at which to bail if not yet complete.
   * @return LinkedList of Diff objects.
   */
  protected LinkedList diff_bisect(String text1, String text2,
      long deadline) {
    // Cache the text lengths to prevent multiple calls.
    int text1_length = text1.length();
    int text2_length = text2.length();
    int max_d = (text1_length + text2_length + 1) / 2;
    int v_offset = max_d;
    int v_length = 2 * max_d;
    int[] v1 = new int[v_length];
    int[] v2 = new int[v_length];
    for (int x = 0; x < v_length; x++) {
      v1[x] = -1;
      v2[x] = -1;
    }
    v1[v_offset + 1] = 0;
    v2[v_offset + 1] = 0;
    int delta = text1_length - text2_length;
    // If the total number of characters is odd, then the front path will
    // collide with the reverse path.
    boolean front = (delta % 2 != 0);
    // Offsets for start and end of k loop.
    // Prevents mapping of space beyond the grid.
    int k1start = 0;
    int k1end = 0;
    int k2start = 0;
    int k2end = 0;
    for (int d = 0; d < max_d; d++) {
      // Bail out if deadline is reached.
      if (System.currentTimeMillis() > deadline) {
        break;
      }

      // Walk the front path one step.
      for (int k1 = -d + k1start; k1 <= d - k1end; k1 += 2) {
        int k1_offset = v_offset + k1;
        int x1;
        if (k1 == -d || (k1 != d && v1[k1_offset - 1] < v1[k1_offset + 1])) {
          x1 = v1[k1_offset + 1];
        } else {
          x1 = v1[k1_offset - 1] + 1;
        }
        int y1 = x1 - k1;
        while (x1 < text1_length && y1 < text2_length
               && text1.charAt(x1) == text2.charAt(y1)) {
          x1++;
          y1++;
        }
        v1[k1_offset] = x1;
        if (x1 > text1_length) {
          // Ran off the right of the graph.
          k1end += 2;
        } else if (y1 > text2_length) {
          // Ran off the bottom of the graph.
          k1start += 2;
        } else if (front) {
          int k2_offset = v_offset + delta - k1;
          if (k2_offset >= 0 && k2_offset < v_length && v2[k2_offset] != -1) {
            // Mirror x2 onto top-left coordinate system.
            int x2 = text1_length - v2[k2_offset];
            if (x1 >= x2) {
              // Overlap detected.
              return diff_bisectSplit(text1, text2, x1, y1, deadline);
            }
          }
        }
      }

      // Walk the reverse path one step.
      for (int k2 = -d + k2start; k2 <= d - k2end; k2 += 2) {
        int k2_offset = v_offset + k2;
        int x2;
        if (k2 == -d || (k2 != d && v2[k2_offset - 1] < v2[k2_offset + 1])) {
          x2 = v2[k2_offset + 1];
        } else {
          x2 = v2[k2_offset - 1] + 1;
        }
        int y2 = x2 - k2;
        while (x2 < text1_length && y2 < text2_length
               && text1.charAt(text1_length - x2 - 1)
               == text2.charAt(text2_length - y2 - 1)) {
          x2++;
          y2++;
        }
        v2[k2_offset] = x2;
        if (x2 > text1_length) {
          // Ran off the left of the graph.
          k2end += 2;
        } else if (y2 > text2_length) {
          // Ran off the top of the graph.
          k2start += 2;
        } else if (!front) {
          int k1_offset = v_offset + delta - k2;
          if (k1_offset >= 0 && k1_offset < v_length && v1[k1_offset] != -1) {
            int x1 = v1[k1_offset];
            int y1 = v_offset + x1 - k1_offset;
            // Mirror x2 onto top-left coordinate system.
            x2 = text1_length - x2;
            if (x1 >= x2) {
              // Overlap detected.
              return diff_bisectSplit(text1, text2, x1, y1, deadline);
            }
          }
        }
      }
    }
    // Diff took too long and hit the deadline or
    // number of diffs equals number of characters, no commonality at all.
    LinkedList diffs = new LinkedList();
    diffs.add(new Diff(Operation.DELETE, text1));
    diffs.add(new Diff(Operation.INSERT, text2));
    return diffs;
  }

  /**
   * Given the location of the 'middle snake', split the diff in two parts
   * and recurse.
   * @param text1 Old string to be diffed.
   * @param text2 New string to be diffed.
   * @param x Index of split point in text1.
   * @param y Index of split point in text2.
   * @param deadline Time at which to bail if not yet complete.
   * @return LinkedList of Diff objects.
   */
  private LinkedList diff_bisectSplit(String text1, String text2,
                                            int x, int y, long deadline) {
    String text1a = text1.substring(0, x);
    String text2a = text2.substring(0, y);
    String text1b = text1.substring(x);
    String text2b = text2.substring(y);

    // Compute both diffs serially.
    LinkedList diffs = diff_main(text1a, text2a, false, deadline);
    LinkedList diffsb = diff_main(text1b, text2b, false, deadline);

    diffs.addAll(diffsb);
    return diffs;
  }

  /**
   * Split two texts into a list of strings.  Reduce the texts to a string of
   * hashes where each Unicode character represents one line.
   * @param text1 First string.
   * @param text2 Second string.
   * @return An object containing the encoded text1, the encoded text2 and
   *     the List of unique strings.  The zeroth element of the List of
   *     unique strings is intentionally blank.
   */
  protected LinesToCharsResult diff_linesToChars(String text1, String text2) {
    List lineArray = new ArrayList();
    Map lineHash = new HashMap();
    // e.g. linearray[4] == "Hello\n"
    // e.g. linehash.get("Hello\n") == 4

    // "\x00" is a valid character, but various debuggers don't like it.
    // So we'll insert a junk entry to avoid generating a null character.
    lineArray.add("");

    String chars1 = diff_linesToCharsMunge(text1, lineArray, lineHash);
    String chars2 = diff_linesToCharsMunge(text2, lineArray, lineHash);
    return new LinesToCharsResult(chars1, chars2, lineArray);
  }

  /**
   * Split a text into a list of strings.  Reduce the texts to a string of
   * hashes where each Unicode character represents one line.
   * @param text String to encode.
   * @param lineArray List of unique strings.
   * @param lineHash Map of strings to indices.
   * @return Encoded string.
   */
  private String diff_linesToCharsMunge(String text, List lineArray,
                                        Map lineHash) {
    int lineStart = 0;
    int lineEnd = -1;
    String line;
    StringBuilder chars = new StringBuilder();
    // Walk the text, pulling out a substring for each line.
    // text.split('\n') would would temporarily double our memory footprint.
    // Modifying text would create many large strings to garbage collect.
    while (lineEnd < text.length() - 1) {
      lineEnd = text.indexOf('\n', lineStart);
      if (lineEnd == -1) {
        lineEnd = text.length() - 1;
      }
      line = text.substring(lineStart, lineEnd + 1);
      lineStart = lineEnd + 1;

      if (lineHash.containsKey(line)) {
        chars.append(String.valueOf((char) (int) lineHash.get(line)));
      } else {
        lineArray.add(line);
        lineHash.put(line, lineArray.size() - 1);
        chars.append(String.valueOf((char) (lineArray.size() - 1)));
      }
    }
    return chars.toString();
  }

  /**
   * Rehydrate the text in a diff from a string of line hashes to real lines of
   * text.
   * @param diffs LinkedList of Diff objects.
   * @param lineArray List of unique strings.
   */
  protected void diff_charsToLines(LinkedList diffs,
                                  List lineArray) {
    StringBuilder text;
    for (Diff diff : diffs) {
      text = new StringBuilder();
      for (int y = 0; y < diff.text.length(); y++) {
        text.append(lineArray.get(diff.text.charAt(y)));
      }
      diff.text = text.toString();
    }
  }

  /**
   * Determine the common prefix of two strings
   * @param text1 First string.
   * @param text2 Second string.
   * @return The number of characters common to the start of each string.
   */
  public int diff_commonPrefix(String text1, String text2) {
    // Performance analysis: http://neil.fraser.name/news/2007/10/09/
    int n = Math.min(text1.length(), text2.length());
    for (int i = 0; i < n; i++) {
      if (text1.charAt(i) != text2.charAt(i)) {
        return i;
      }
    }
    return n;
  }

  /**
   * Determine the common suffix of two strings
   * @param text1 First string.
   * @param text2 Second string.
   * @return The number of characters common to the end of each string.
   */
  public int diff_commonSuffix(String text1, String text2) {
    // Performance analysis: http://neil.fraser.name/news/2007/10/09/
    int text1_length = text1.length();
    int text2_length = text2.length();
    int n = Math.min(text1_length, text2_length);
    for (int i = 1; i <= n; i++) {
      if (text1.charAt(text1_length - i) != text2.charAt(text2_length - i)) {
        return i - 1;
      }
    }
    return n;
  }

  /**
   * Determine if the suffix of one string is the prefix of another.
   * @param text1 First string.
   * @param text2 Second string.
   * @return The number of characters common to the end of the first
   *     string and the start of the second string.
   */
  protected int diff_commonOverlap(String text1, String text2) {
    // Cache the text lengths to prevent multiple calls.
    int text1_length = text1.length();
    int text2_length = text2.length();
    // Eliminate the null case.
    if (text1_length == 0 || text2_length == 0) {
      return 0;
    }
    // Truncate the longer string.
    if (text1_length > text2_length) {
      text1 = text1.substring(text1_length - text2_length);
    } else if (text1_length < text2_length) {
      text2 = text2.substring(0, text1_length);
    }
    int text_length = Math.min(text1_length, text2_length);
    // Quick check for the worst case.
    if (text1.equals(text2)) {
      return text_length;
    }

    // Start by looking for a single character match
    // and increase length until no match is found.
    // Performance analysis: http://neil.fraser.name/news/2010/11/04/
    int best = 0;
    int length = 1;
    while (true) {
      String pattern = text1.substring(text_length - length);
      int found = text2.indexOf(pattern);
      if (found == -1) {
        return best;
      }
      length += found;
      if (found == 0 || text1.substring(text_length - length).equals(
          text2.substring(0, length))) {
        best = length;
        length++;
      }
    }
  }

  /**
   * Do the two texts share a substring which is at least half the length of
   * the longer text?
   * This speedup can produce non-minimal diffs.
   * @param text1 First string.
   * @param text2 Second string.
   * @return Five element String array, containing the prefix of text1, the
   *     suffix of text1, the prefix of text2, the suffix of text2 and the
   *     common middle.  Or null if there was no match.
   */
  protected String[] diff_halfMatch(String text1, String text2) {
    if (Diff_Timeout <= 0) {
      // Don't risk returning a non-optimal diff if we have unlimited time.
      return null;
    }
    String longtext = text1.length() > text2.length() ? text1 : text2;
    String shorttext = text1.length() > text2.length() ? text2 : text1;
    if (longtext.length() < 4 || shorttext.length() * 2 < longtext.length()) {
      return null;  // Pointless.
    }

    // First check if the second quarter is the seed for a half-match.
    String[] hm1 = diff_halfMatchI(longtext, shorttext,
                                   (longtext.length() + 3) / 4);
    // Check again based on the third quarter.
    String[] hm2 = diff_halfMatchI(longtext, shorttext,
                                   (longtext.length() + 1) / 2);
    String[] hm;
    if (hm1 == null && hm2 == null) {
      return null;
    } else if (hm2 == null) {
      hm = hm1;
    } else if (hm1 == null) {
      hm = hm2;
    } else {
      // Both matched.  Select the longest.
      hm = hm1[4].length() > hm2[4].length() ? hm1 : hm2;
    }

    // A half-match was found, sort out the return data.
    if (text1.length() > text2.length()) {
      return hm;
      //return new String[]{hm[0], hm[1], hm[2], hm[3], hm[4]};
    } else {
      return new String[]{hm[2], hm[3], hm[0], hm[1], hm[4]};
    }
  }

  /**
   * Does a substring of shorttext exist within longtext such that the
   * substring is at least half the length of longtext?
   * @param longtext Longer string.
   * @param shorttext Shorter string.
   * @param i Start index of quarter length substring within longtext.
   * @return Five element String array, containing the prefix of longtext, the
   *     suffix of longtext, the prefix of shorttext, the suffix of shorttext
   *     and the common middle.  Or null if there was no match.
   */
  private String[] diff_halfMatchI(String longtext, String shorttext, int i) {
    // Start with a 1/4 length substring at position i as a seed.
    String seed = longtext.substring(i, i + longtext.length() / 4);
    int j = -1;
    String best_common = "";
    String best_longtext_a = "", best_longtext_b = "";
    String best_shorttext_a = "", best_shorttext_b = "";
    while ((j = shorttext.indexOf(seed, j + 1)) != -1) {
      int prefixLength = diff_commonPrefix(longtext.substring(i),
                                           shorttext.substring(j));
      int suffixLength = diff_commonSuffix(longtext.substring(0, i),
                                           shorttext.substring(0, j));
      if (best_common.length() < suffixLength + prefixLength) {
        best_common = shorttext.substring(j - suffixLength, j)
            + shorttext.substring(j, j + prefixLength);
        best_longtext_a = longtext.substring(0, i - suffixLength);
        best_longtext_b = longtext.substring(i + prefixLength);
        best_shorttext_a = shorttext.substring(0, j - suffixLength);
        best_shorttext_b = shorttext.substring(j + prefixLength);
      }
    }
    if (best_common.length() * 2 >= longtext.length()) {
      return new String[]{best_longtext_a, best_longtext_b,
                          best_shorttext_a, best_shorttext_b, best_common};
    } else {
      return null;
    }
  }

  /**
   * Reduce the number of edits by eliminating semantically trivial equalities.
   * @param diffs LinkedList of Diff objects.
   */
  public void diff_cleanupSemantic(LinkedList diffs) {
    if (diffs.isEmpty()) {
      return;
    }
    boolean changes = false;
    Stack equalities = new Stack();  // Stack of qualities.
    String lastequality = null; // Always equal to equalities.lastElement().text
    ListIterator pointer = diffs.listIterator();
    // Number of characters that changed prior to the equality.
    int length_insertions1 = 0;
    int length_deletions1 = 0;
    // Number of characters that changed after the equality.
    int length_insertions2 = 0;
    int length_deletions2 = 0;
    Diff thisDiff = pointer.next();
    while (thisDiff != null) {
      if (thisDiff.operation == Operation.EQUAL) {
        // Equality found.
        equalities.push(thisDiff);
        length_insertions1 = length_insertions2;
        length_deletions1 = length_deletions2;
        length_insertions2 = 0;
        length_deletions2 = 0;
        lastequality = thisDiff.text;
      } else {
        // An insertion or deletion.
        if (thisDiff.operation == Operation.INSERT) {
          length_insertions2 += thisDiff.text.length();
        } else {
          length_deletions2 += thisDiff.text.length();
        }
        // Eliminate an equality that is smaller or equal to the edits on both
        // sides of it.
        if (lastequality != null && (lastequality.length()
            <= Math.max(length_insertions1, length_deletions1))
            && (lastequality.length()
                <= Math.max(length_insertions2, length_deletions2))) {
          //System.out.println("Splitting: '" + lastequality + "'");
          // Walk back to offending equality.
          while (thisDiff != equalities.lastElement()) {
            thisDiff = pointer.previous();
          }
          pointer.next();

          // Replace equality with a delete.
          pointer.set(new Diff(Operation.DELETE, lastequality));
          // Insert a corresponding an insert.
          pointer.add(new Diff(Operation.INSERT, lastequality));

          equalities.pop();  // Throw away the equality we just deleted.
          if (!equalities.empty()) {
            // Throw away the previous equality (it needs to be reevaluated).
            equalities.pop();
          }
          if (equalities.empty()) {
            // There are no previous equalities, walk back to the start.
            while (pointer.hasPrevious()) {
              pointer.previous();
            }
          } else {
            // There is a safe equality we can fall back to.
            thisDiff = equalities.lastElement();
            while (thisDiff != pointer.previous()) {
              // Intentionally empty loop.
            }
          }

          length_insertions1 = 0;  // Reset the counters.
          length_insertions2 = 0;
          length_deletions1 = 0;
          length_deletions2 = 0;
          lastequality = null;
          changes = true;
        }
      }
      thisDiff = pointer.hasNext() ? pointer.next() : null;
    }

    // Normalize the diff.
    if (changes) {
      diff_cleanupMerge(diffs);
    }
    diff_cleanupSemanticLossless(diffs);

    // Find any overlaps between deletions and insertions.
    // e.g: abcxxxxxxdef
    //   -> abcxxxdef
    // e.g: xxxabcdefxxx
    //   -> defxxxabc
    // Only extract an overlap if it is as big as the edit ahead or behind it.
    pointer = diffs.listIterator();
    Diff prevDiff = null;
    thisDiff = null;
    if (pointer.hasNext()) {
      prevDiff = pointer.next();
      if (pointer.hasNext()) {
        thisDiff = pointer.next();
      }
    }
    while (thisDiff != null) {
      if (prevDiff.operation == Operation.DELETE &&
          thisDiff.operation == Operation.INSERT) {
        String deletion = prevDiff.text;
        String insertion = thisDiff.text;
        int overlap_length1 = this.diff_commonOverlap(deletion, insertion);
        int overlap_length2 = this.diff_commonOverlap(insertion, deletion);
        if (overlap_length1 >= overlap_length2) {
          if (overlap_length1 >= deletion.length() / 2.0 ||
              overlap_length1 >= insertion.length() / 2.0) {
            // Overlap found. Insert an equality and trim the surrounding edits.
            pointer.previous();
            pointer.add(new Diff(Operation.EQUAL,
                                 insertion.substring(0, overlap_length1)));
            prevDiff.text =
                deletion.substring(0, deletion.length() - overlap_length1);
            thisDiff.text = insertion.substring(overlap_length1);
            // pointer.add inserts the element before the cursor, so there is
            // no need to step past the new element.
          }
        } else {
          if (overlap_length2 >= deletion.length() / 2.0 ||
              overlap_length2 >= insertion.length() / 2.0) {
            // Reverse overlap found.
            // Insert an equality and swap and trim the surrounding edits.
            pointer.previous();
            pointer.add(new Diff(Operation.EQUAL,
                                 deletion.substring(0, overlap_length2)));
            prevDiff.operation = Operation.INSERT;
            prevDiff.text =
              insertion.substring(0, insertion.length() - overlap_length2);
            thisDiff.operation = Operation.DELETE;
            thisDiff.text = deletion.substring(overlap_length2);
            // pointer.add inserts the element before the cursor, so there is
            // no need to step past the new element.
          }
        }
        thisDiff = pointer.hasNext() ? pointer.next() : null;
      }
      prevDiff = thisDiff;
      thisDiff = pointer.hasNext() ? pointer.next() : null;
    }
  }

  /**
   * Look for single edits surrounded on both sides by equalities
   * which can be shifted sideways to align the edit to a word boundary.
   * e.g: The cat came. -> The cat came.
   * @param diffs LinkedList of Diff objects.
   */
  public void diff_cleanupSemanticLossless(LinkedList diffs) {
    String equality1, edit, equality2;
    String commonString;
    int commonOffset;
    int score, bestScore;
    String bestEquality1, bestEdit, bestEquality2;
    // Create a new iterator at the start.
    ListIterator pointer = diffs.listIterator();
    Diff prevDiff = pointer.hasNext() ? pointer.next() : null;
    Diff thisDiff = pointer.hasNext() ? pointer.next() : null;
    Diff nextDiff = pointer.hasNext() ? pointer.next() : null;
    // Intentionally ignore the first and last element (don't need checking).
    while (nextDiff != null) {
      if (prevDiff.operation == Operation.EQUAL &&
          nextDiff.operation == Operation.EQUAL) {
        // This is a single edit surrounded by equalities.
        equality1 = prevDiff.text;
        edit = thisDiff.text;
        equality2 = nextDiff.text;

        // First, shift the edit as far left as possible.
        commonOffset = diff_commonSuffix(equality1, edit);
        if (commonOffset != 0) {
          commonString = edit.substring(edit.length() - commonOffset);
          equality1 = equality1.substring(0, equality1.length() - commonOffset);
          edit = commonString + edit.substring(0, edit.length() - commonOffset);
          equality2 = commonString + equality2;
        }

        // Second, step character by character right, looking for the best fit.
        bestEquality1 = equality1;
        bestEdit = edit;
        bestEquality2 = equality2;
        bestScore = diff_cleanupSemanticScore(equality1, edit)
            + diff_cleanupSemanticScore(edit, equality2);
        while (edit.length() != 0 && equality2.length() != 0
            && edit.charAt(0) == equality2.charAt(0)) {
          equality1 += edit.charAt(0);
          edit = edit.substring(1) + equality2.charAt(0);
          equality2 = equality2.substring(1);
          score = diff_cleanupSemanticScore(equality1, edit)
              + diff_cleanupSemanticScore(edit, equality2);
          // The >= encourages trailing rather than leading whitespace on edits.
          if (score >= bestScore) {
            bestScore = score;
            bestEquality1 = equality1;
            bestEdit = edit;
            bestEquality2 = equality2;
          }
        }

        if (!prevDiff.text.equals(bestEquality1)) {
          // We have an improvement, save it back to the diff.
          if (bestEquality1.length() != 0) {
            prevDiff.text = bestEquality1;
          } else {
            pointer.previous(); // Walk past nextDiff.
            pointer.previous(); // Walk past thisDiff.
            pointer.previous(); // Walk past prevDiff.
            pointer.remove(); // Delete prevDiff.
            pointer.next(); // Walk past thisDiff.
            pointer.next(); // Walk past nextDiff.
          }
          thisDiff.text = bestEdit;
          if (bestEquality2.length() != 0) {
            nextDiff.text = bestEquality2;
          } else {
            pointer.remove(); // Delete nextDiff.
            nextDiff = thisDiff;
            thisDiff = prevDiff;
          }
        }
      }
      prevDiff = thisDiff;
      thisDiff = nextDiff;
      nextDiff = pointer.hasNext() ? pointer.next() : null;
    }
  }

  /**
   * Given two strings, compute a score representing whether the internal
   * boundary falls on logical boundaries.
   * Scores range from 6 (best) to 0 (worst).
   * @param one First string.
   * @param two Second string.
   * @return The score.
   */
  private int diff_cleanupSemanticScore(String one, String two) {
    if (one.length() == 0 || two.length() == 0) {
      // Edges are the best.
      return 6;
    }

    // Each port of this function behaves slightly differently due to
    // subtle differences in each language's definition of things like
    // 'whitespace'.  Since this function's purpose is largely cosmetic,
    // the choice has been made to use each language's native features
    // rather than force total conformity.
    char char1 = one.charAt(one.length() - 1);
    char char2 = two.charAt(0);
    boolean nonAlphaNumeric1 = !Character.isLetterOrDigit(char1);
    boolean nonAlphaNumeric2 = !Character.isLetterOrDigit(char2);
    boolean whitespace1 = nonAlphaNumeric1 && Character.isWhitespace(char1);
    boolean whitespace2 = nonAlphaNumeric2 && Character.isWhitespace(char2);
    boolean lineBreak1 = whitespace1
        && Character.getType(char1) == Character.CONTROL;
    boolean lineBreak2 = whitespace2
        && Character.getType(char2) == Character.CONTROL;
    boolean blankLine1 = lineBreak1 && BLANKLINEEND.matcher(one).find();
    boolean blankLine2 = lineBreak2 && BLANKLINESTART.matcher(two).find();

    if (blankLine1 || blankLine2) {
      // Five points for blank lines.
      return 5;
    } else if (lineBreak1 || lineBreak2) {
      // Four points for line breaks.
      return 4;
    } else if (nonAlphaNumeric1 && !whitespace1 && whitespace2) {
      // Three points for end of sentences.
      return 3;
    } else if (whitespace1 || whitespace2) {
      // Two points for whitespace.
      return 2;
    } else if (nonAlphaNumeric1 || nonAlphaNumeric2) {
      // One point for non-alphanumeric.
      return 1;
    }
    return 0;
  }

  // Define some regex patterns for matching boundaries.
  private Pattern BLANKLINEEND
      = Pattern.compile("\\n\\r?\\n\\Z", Pattern.DOTALL);
  private Pattern BLANKLINESTART
      = Pattern.compile("\\A\\r?\\n\\r?\\n", Pattern.DOTALL);

  /**
   * Reduce the number of edits by eliminating operationally trivial equalities.
   * @param diffs LinkedList of Diff objects.
   */
  public void diff_cleanupEfficiency(LinkedList diffs) {
    if (diffs.isEmpty()) {
      return;
    }
    boolean changes = false;
    Stack equalities = new Stack();  // Stack of equalities.
    String lastequality = null; // Always equal to equalities.lastElement().text
    ListIterator pointer = diffs.listIterator();
    // Is there an insertion operation before the last equality.
    boolean pre_ins = false;
    // Is there a deletion operation before the last equality.
    boolean pre_del = false;
    // Is there an insertion operation after the last equality.
    boolean post_ins = false;
    // Is there a deletion operation after the last equality.
    boolean post_del = false;
    Diff thisDiff = pointer.next();
    Diff safeDiff = thisDiff;  // The last Diff that is known to be unsplitable.
    while (thisDiff != null) {
      if (thisDiff.operation == Operation.EQUAL) {
        // Equality found.
        if (thisDiff.text.length() < Diff_EditCost && (post_ins || post_del)) {
          // Candidate found.
          equalities.push(thisDiff);
          pre_ins = post_ins;
          pre_del = post_del;
          lastequality = thisDiff.text;
        } else {
          // Not a candidate, and can never become one.
          equalities.clear();
          lastequality = null;
          safeDiff = thisDiff;
        }
        post_ins = post_del = false;
      } else {
        // An insertion or deletion.
        if (thisDiff.operation == Operation.DELETE) {
          post_del = true;
        } else {
          post_ins = true;
        }
        /*
         * Five types to be split:
         * ABXYCD
         * AXCD
         * ABXC
         * AXCD
         * ABXC
         */
        if (lastequality != null
            && ((pre_ins && pre_del && post_ins && post_del)
                || ((lastequality.length() < Diff_EditCost / 2)
                    && ((pre_ins ? 1 : 0) + (pre_del ? 1 : 0)
                        + (post_ins ? 1 : 0) + (post_del ? 1 : 0)) == 3))) {
          //System.out.println("Splitting: '" + lastequality + "'");
          // Walk back to offending equality.
          while (thisDiff != equalities.lastElement()) {
            thisDiff = pointer.previous();
          }
          pointer.next();

          // Replace equality with a delete.
          pointer.set(new Diff(Operation.DELETE, lastequality));
          // Insert a corresponding an insert.
          pointer.add(thisDiff = new Diff(Operation.INSERT, lastequality));

          equalities.pop();  // Throw away the equality we just deleted.
          lastequality = null;
          if (pre_ins && pre_del) {
            // No changes made which could affect previous entry, keep going.
            post_ins = post_del = true;
            equalities.clear();
            safeDiff = thisDiff;
          } else {
            if (!equalities.empty()) {
              // Throw away the previous equality (it needs to be reevaluated).
              equalities.pop();
            }
            if (equalities.empty()) {
              // There are no previous questionable equalities,
              // walk back to the last known safe diff.
              thisDiff = safeDiff;
            } else {
              // There is an equality we can fall back to.
              thisDiff = equalities.lastElement();
            }
            while (thisDiff != pointer.previous()) {
              // Intentionally empty loop.
            }
            post_ins = post_del = false;
          }

          changes = true;
        }
      }
      thisDiff = pointer.hasNext() ? pointer.next() : null;
    }

    if (changes) {
      diff_cleanupMerge(diffs);
    }
  }

  /**
   * Reorder and merge like edit sections.  Merge equalities.
   * Any edit section can move as long as it doesn't cross an equality.
   * @param diffs LinkedList of Diff objects.
   */
  public void diff_cleanupMerge(LinkedList diffs) {
    diffs.add(new Diff(Operation.EQUAL, ""));  // Add a dummy entry at the end.
    ListIterator pointer = diffs.listIterator();
    int count_delete = 0;
    int count_insert = 0;
    String text_delete = "";
    String text_insert = "";
    Diff thisDiff = pointer.next();
    Diff prevEqual = null;
    int commonlength;
    while (thisDiff != null) {
      switch (thisDiff.operation) {
      case INSERT:
        count_insert++;
        text_insert += thisDiff.text;
        prevEqual = null;
        break;
      case DELETE:
        count_delete++;
        text_delete += thisDiff.text;
        prevEqual = null;
        break;
      case EQUAL:
        if (count_delete + count_insert > 1) {
          boolean both_types = count_delete != 0 && count_insert != 0;
          // Delete the offending records.
          pointer.previous();  // Reverse direction.
          while (count_delete-- > 0) {
            pointer.previous();
            pointer.remove();
          }
          while (count_insert-- > 0) {
            pointer.previous();
            pointer.remove();
          }
          if (both_types) {
            // Factor out any common prefixies.
            commonlength = diff_commonPrefix(text_insert, text_delete);
            if (commonlength != 0) {
              if (pointer.hasPrevious()) {
                thisDiff = pointer.previous();
                assert thisDiff.operation == Operation.EQUAL
                       : "Previous diff should have been an equality.";
                thisDiff.text += text_insert.substring(0, commonlength);
                pointer.next();
              } else {
                pointer.add(new Diff(Operation.EQUAL,
                    text_insert.substring(0, commonlength)));
              }
              text_insert = text_insert.substring(commonlength);
              text_delete = text_delete.substring(commonlength);
            }
            // Factor out any common suffixies.
            commonlength = diff_commonSuffix(text_insert, text_delete);
            if (commonlength != 0) {
              thisDiff = pointer.next();
              thisDiff.text = text_insert.substring(text_insert.length()
                  - commonlength) + thisDiff.text;
              text_insert = text_insert.substring(0, text_insert.length()
                  - commonlength);
              text_delete = text_delete.substring(0, text_delete.length()
                  - commonlength);
              pointer.previous();
            }
          }
          // Insert the merged records.
          if (text_delete.length() != 0) {
            pointer.add(new Diff(Operation.DELETE, text_delete));
          }
          if (text_insert.length() != 0) {
            pointer.add(new Diff(Operation.INSERT, text_insert));
          }
          // Step forward to the equality.
          thisDiff = pointer.hasNext() ? pointer.next() : null;
        } else if (prevEqual != null) {
          // Merge this equality with the previous one.
          prevEqual.text += thisDiff.text;
          pointer.remove();
          thisDiff = pointer.previous();
          pointer.next();  // Forward direction
        }
        count_insert = 0;
        count_delete = 0;
        text_delete = "";
        text_insert = "";
        prevEqual = thisDiff;
        break;
      }
      thisDiff = pointer.hasNext() ? pointer.next() : null;
    }
    if (diffs.getLast().text.length() == 0) {
      diffs.removeLast();  // Remove the dummy entry at the end.
    }

    /*
     * Second pass: look for single edits surrounded on both sides by equalities
     * which can be shifted sideways to eliminate an equality.
     * e.g: ABAC -> ABAC
     */
    boolean changes = false;
    // Create a new iterator at the start.
    // (As opposed to walking the current one back.)
    pointer = diffs.listIterator();
    Diff prevDiff = pointer.hasNext() ? pointer.next() : null;
    thisDiff = pointer.hasNext() ? pointer.next() : null;
    Diff nextDiff = pointer.hasNext() ? pointer.next() : null;
    // Intentionally ignore the first and last element (don't need checking).
    while (nextDiff != null) {
      if (prevDiff.operation == Operation.EQUAL &&
          nextDiff.operation == Operation.EQUAL) {
        // This is a single edit surrounded by equalities.
        if (thisDiff.text.endsWith(prevDiff.text)) {
          // Shift the edit over the previous equality.
          thisDiff.text = prevDiff.text
              + thisDiff.text.substring(0, thisDiff.text.length()
                                           - prevDiff.text.length());
          nextDiff.text = prevDiff.text + nextDiff.text;
          pointer.previous(); // Walk past nextDiff.
          pointer.previous(); // Walk past thisDiff.
          pointer.previous(); // Walk past prevDiff.
          pointer.remove(); // Delete prevDiff.
          pointer.next(); // Walk past thisDiff.
          thisDiff = pointer.next(); // Walk past nextDiff.
          nextDiff = pointer.hasNext() ? pointer.next() : null;
          changes = true;
        } else if (thisDiff.text.startsWith(nextDiff.text)) {
          // Shift the edit over the next equality.
          prevDiff.text += nextDiff.text;
          thisDiff.text = thisDiff.text.substring(nextDiff.text.length())
              + nextDiff.text;
          pointer.remove(); // Delete nextDiff.
          nextDiff = pointer.hasNext() ? pointer.next() : null;
          changes = true;
        }
      }
      prevDiff = thisDiff;
      thisDiff = nextDiff;
      nextDiff = pointer.hasNext() ? pointer.next() : null;
    }
    // If shifts were made, the diff needs reordering and another shift sweep.
    if (changes) {
      diff_cleanupMerge(diffs);
    }
  }

  /**
   * loc is a location in text1, compute and return the equivalent location in
   * text2.
   * e.g. "The cat" vs "The big cat", 1->1, 5->8
   * @param diffs LinkedList of Diff objects.
   * @param loc Location within text1.
   * @return Location within text2.
   */
  public int diff_xIndex(LinkedList diffs, int loc) {
    int chars1 = 0;
    int chars2 = 0;
    int last_chars1 = 0;
    int last_chars2 = 0;
    Diff lastDiff = null;
    for (Diff aDiff : diffs) {
      if (aDiff.operation != Operation.INSERT) {
        // Equality or deletion.
        chars1 += aDiff.text.length();
      }
      if (aDiff.operation != Operation.DELETE) {
        // Equality or insertion.
        chars2 += aDiff.text.length();
      }
      if (chars1 > loc) {
        // Overshot the location.
        lastDiff = aDiff;
        break;
      }
      last_chars1 = chars1;
      last_chars2 = chars2;
    }
    if (lastDiff != null && lastDiff.operation == Operation.DELETE) {
      // The location was deleted.
      return last_chars2;
    }
    // Add the remaining character length.
    return last_chars2 + (loc - last_chars1);
  }

  /**
   * Convert a Diff list into a pretty HTML report.
   * @param diffs LinkedList of Diff objects.
   * @return HTML representation.
   */
  public String diff_prettyHtml(LinkedList diffs) {
    StringBuilder html = new StringBuilder();
    for (Diff aDiff : diffs) {
      String text = aDiff.text.replace("&", "&").replace("<", "<")
          .replace(">", ">").replace("\n", "¶
"); switch (aDiff.operation) { case INSERT: html.append("").append(text) .append(""); break; case DELETE: html.append("").append(text) .append(""); break; case EQUAL: html.append("").append(text).append(""); break; } } return html.toString(); } /** * Compute and return the source text (all equalities and deletions). * @param diffs LinkedList of Diff objects. * @return Source text. */ public String diff_text1(LinkedList diffs) { StringBuilder text = new StringBuilder(); for (Diff aDiff : diffs) { if (aDiff.operation != Operation.INSERT) { text.append(aDiff.text); } } return text.toString(); } /** * Compute and return the destination text (all equalities and insertions). * @param diffs LinkedList of Diff objects. * @return Destination text. */ public String diff_text2(LinkedList diffs) { StringBuilder text = new StringBuilder(); for (Diff aDiff : diffs) { if (aDiff.operation != Operation.DELETE) { text.append(aDiff.text); } } return text.toString(); } /** * Compute the Levenshtein distance; the number of inserted, deleted or * substituted characters. * @param diffs LinkedList of Diff objects. * @return Number of changes. */ public int diff_levenshtein(LinkedList diffs) { int levenshtein = 0; int insertions = 0; int deletions = 0; for (Diff aDiff : diffs) { switch (aDiff.operation) { case INSERT: insertions += aDiff.text.length(); break; case DELETE: deletions += aDiff.text.length(); break; case EQUAL: // A deletion and an insertion is one substitution. levenshtein += Math.max(insertions, deletions); insertions = 0; deletions = 0; break; } } levenshtein += Math.max(insertions, deletions); return levenshtein; } /** * Crush the diff into an encoded string which describes the operations * required to transform text1 into text2. * E.g. =3\t-2\t+ing -> Keep 3 chars, delete 2 chars, insert 'ing'. * Operations are tab-separated. Inserted text is escaped using %xx notation. * @param diffs Array of Diff objects. * @return Delta text. */ public String diff_toDelta(LinkedList diffs) { StringBuilder text = new StringBuilder(); for (Diff aDiff : diffs) { switch (aDiff.operation) { case INSERT: try { text.append("+").append(URLEncoder.encode(aDiff.text, "UTF-8") .replace('+', ' ')).append("\t"); } catch (UnsupportedEncodingException e) { // Not likely on modern system. throw new Error("This system does not support UTF-8.", e); } break; case DELETE: text.append("-").append(aDiff.text.length()).append("\t"); break; case EQUAL: text.append("=").append(aDiff.text.length()).append("\t"); break; } } String delta = text.toString(); if (delta.length() != 0) { // Strip off trailing tab character. delta = delta.substring(0, delta.length() - 1); delta = unescapeForEncodeUriCompatability(delta); } return delta; } /** * Given the original text1, and an encoded string which describes the * operations required to transform text1 into text2, compute the full diff. * @param text1 Source string for the diff. * @param delta Delta text. * @return Array of Diff objects or null if invalid. * @throws IllegalArgumentException If invalid input. */ public LinkedList diff_fromDelta(String text1, String delta) throws IllegalArgumentException { LinkedList diffs = new LinkedList(); int pointer = 0; // Cursor in text1 String[] tokens = delta.split("\t"); for (String token : tokens) { if (token.length() == 0) { // Blank tokens are ok (from a trailing \t). continue; } // Each token begins with a one character parameter which specifies the // operation of this token (delete, insert, equality). String param = token.substring(1); switch (token.charAt(0)) { case '+': // decode would change all "+" to " " param = param.replace("+", "%2B"); try { param = URLDecoder.decode(param, "UTF-8"); } catch (UnsupportedEncodingException e) { // Not likely on modern system. throw new Error("This system does not support UTF-8.", e); } catch (IllegalArgumentException e) { // Malformed URI sequence. throw new IllegalArgumentException( "Illegal escape in diff_fromDelta: " + param, e); } diffs.add(new Diff(Operation.INSERT, param)); break; case '-': // Fall through. case '=': int n; try { n = Integer.parseInt(param); } catch (NumberFormatException e) { throw new IllegalArgumentException( "Invalid number in diff_fromDelta: " + param, e); } if (n < 0) { throw new IllegalArgumentException( "Negative number in diff_fromDelta: " + param); } String text; try { text = text1.substring(pointer, pointer += n); } catch (StringIndexOutOfBoundsException e) { throw new IllegalArgumentException("Delta length (" + pointer + ") larger than source text length (" + text1.length() + ").", e); } if (token.charAt(0) == '=') { diffs.add(new Diff(Operation.EQUAL, text)); } else { diffs.add(new Diff(Operation.DELETE, text)); } break; default: // Anything else is an error. throw new IllegalArgumentException( "Invalid diff operation in diff_fromDelta: " + token.charAt(0)); } } if (pointer != text1.length()) { throw new IllegalArgumentException("Delta length (" + pointer + ") smaller than source text length (" + text1.length() + ")."); } return diffs; } // MATCH FUNCTIONS /** * Locate the best instance of 'pattern' in 'text' near 'loc'. * Returns -1 if no match found. * @param text The text to search. * @param pattern The pattern to search for. * @param loc The location to search around. * @return Best match index or -1. */ public int match_main(String text, String pattern, int loc) { // Check for null inputs. if (text == null || pattern == null) { throw new IllegalArgumentException("Null inputs. (match_main)"); } loc = Math.max(0, Math.min(loc, text.length())); if (text.equals(pattern)) { // Shortcut (potentially not guaranteed by the algorithm) return 0; } else if (text.length() == 0) { // Nothing to match. return -1; } else if (loc + pattern.length() <= text.length() && text.substring(loc, loc + pattern.length()).equals(pattern)) { // Perfect match at the perfect spot! (Includes case of null pattern) return loc; } else { // Do a fuzzy compare. return match_bitap(text, pattern, loc); } } /** * Locate the best instance of 'pattern' in 'text' near 'loc' using the * Bitap algorithm. Returns -1 if no match found. * @param text The text to search. * @param pattern The pattern to search for. * @param loc The location to search around. * @return Best match index or -1. */ protected int match_bitap(String text, String pattern, int loc) { assert (Match_MaxBits == 0 || pattern.length() <= Match_MaxBits) : "Pattern too long for this application."; // Initialise the alphabet. Map s = match_alphabet(pattern); // Highest score beyond which we give up. double score_threshold = Match_Threshold; // Is there a nearby exact match? (speedup) int best_loc = text.indexOf(pattern, loc); if (best_loc != -1) { score_threshold = Math.min(match_bitapScore(0, best_loc, loc, pattern), score_threshold); // What about in the other direction? (speedup) best_loc = text.lastIndexOf(pattern, loc + pattern.length()); if (best_loc != -1) { score_threshold = Math.min(match_bitapScore(0, best_loc, loc, pattern), score_threshold); } } // Initialise the bit arrays. int matchmask = 1 << (pattern.length() - 1); best_loc = -1; int bin_min, bin_mid; int bin_max = pattern.length() + text.length(); // Empty initialization added to appease Java compiler. int[] last_rd = new int[0]; for (int d = 0; d < pattern.length(); d++) { // Scan for the best match; each iteration allows for one more error. // Run a binary search to determine how far from 'loc' we can stray at // this error level. bin_min = 0; bin_mid = bin_max; while (bin_min < bin_mid) { if (match_bitapScore(d, loc + bin_mid, loc, pattern) <= score_threshold) { bin_min = bin_mid; } else { bin_max = bin_mid; } bin_mid = (bin_max - bin_min) / 2 + bin_min; } // Use the result from this iteration as the maximum for the next. bin_max = bin_mid; int start = Math.max(1, loc - bin_mid + 1); int finish = Math.min(loc + bin_mid, text.length()) + pattern.length(); int[] rd = new int[finish + 2]; rd[finish + 1] = (1 << d) - 1; for (int j = finish; j >= start; j--) { int charMatch; if (text.length() <= j - 1 || !s.containsKey(text.charAt(j - 1))) { // Out of range. charMatch = 0; } else { charMatch = s.get(text.charAt(j - 1)); } if (d == 0) { // First pass: exact match. rd[j] = ((rd[j + 1] << 1) | 1) & charMatch; } else { // Subsequent passes: fuzzy match. rd[j] = (((rd[j + 1] << 1) | 1) & charMatch) | (((last_rd[j + 1] | last_rd[j]) << 1) | 1) | last_rd[j + 1]; } if ((rd[j] & matchmask) != 0) { double score = match_bitapScore(d, j - 1, loc, pattern); // This match will almost certainly be better than any existing // match. But check anyway. if (score <= score_threshold) { // Told you so. score_threshold = score; best_loc = j - 1; if (best_loc > loc) { // When passing loc, don't exceed our current distance from loc. start = Math.max(1, 2 * loc - best_loc); } else { // Already passed loc, downhill from here on in. break; } } } } if (match_bitapScore(d + 1, loc, loc, pattern) > score_threshold) { // No hope for a (better) match at greater error levels. break; } last_rd = rd; } return best_loc; } /** * Compute and return the score for a match with e errors and x location. * @param e Number of errors in match. * @param x Location of match. * @param loc Expected location of match. * @param pattern Pattern being sought. * @return Overall score for match (0.0 = good, 1.0 = bad). */ private double match_bitapScore(int e, int x, int loc, String pattern) { float accuracy = (float) e / pattern.length(); int proximity = Math.abs(loc - x); if (Match_Distance == 0) { // Dodge divide by zero error. return proximity == 0 ? accuracy : 1.0; } return accuracy + (proximity / (float) Match_Distance); } /** * Initialise the alphabet for the Bitap algorithm. * @param pattern The text to encode. * @return Hash of character locations. */ protected Map match_alphabet(String pattern) { Map s = new HashMap(); char[] char_pattern = pattern.toCharArray(); for (char c : char_pattern) { s.put(c, 0); } int i = 0; for (char c : char_pattern) { s.put(c, s.get(c) | (1 << (pattern.length() - i - 1))); i++; } return s; } // PATCH FUNCTIONS /** * Increase the context until it is unique, * but don't let the pattern expand beyond Match_MaxBits. * @param patch The patch to grow. * @param text Source text. */ protected void patch_addContext(Patch patch, String text) { if (text.length() == 0) { return; } String pattern = text.substring(patch.start2, patch.start2 + patch.length1); int padding = 0; // Look for the first and last matches of pattern in text. If two different // matches are found, increase the pattern length. while (text.indexOf(pattern) != text.lastIndexOf(pattern) && pattern.length() < Match_MaxBits - Patch_Margin - Patch_Margin) { padding += Patch_Margin; pattern = text.substring(Math.max(0, patch.start2 - padding), Math.min(text.length(), patch.start2 + patch.length1 + padding)); } // Add one chunk for good luck. padding += Patch_Margin; // Add the prefix. String prefix = text.substring(Math.max(0, patch.start2 - padding), patch.start2); if (prefix.length() != 0) { patch.diffs.addFirst(new Diff(Operation.EQUAL, prefix)); } // Add the suffix. String suffix = text.substring(patch.start2 + patch.length1, Math.min(text.length(), patch.start2 + patch.length1 + padding)); if (suffix.length() != 0) { patch.diffs.addLast(new Diff(Operation.EQUAL, suffix)); } // Roll back the start points. patch.start1 -= prefix.length(); patch.start2 -= prefix.length(); // Extend the lengths. patch.length1 += prefix.length() + suffix.length(); patch.length2 += prefix.length() + suffix.length(); } /** * Compute a list of patches to turn text1 into text2. * A set of diffs will be computed. * @param text1 Old text. * @param text2 New text. * @return LinkedList of Patch objects. */ public LinkedList patch_make(String text1, String text2) { if (text1 == null || text2 == null) { throw new IllegalArgumentException("Null inputs. (patch_make)"); } // No diffs provided, compute our own. LinkedList diffs = diff_main(text1, text2, true); if (diffs.size() > 2) { diff_cleanupSemantic(diffs); diff_cleanupEfficiency(diffs); } return patch_make(text1, diffs); } /** * Compute a list of patches to turn text1 into text2. * text1 will be derived from the provided diffs. * @param diffs Array of Diff objects for text1 to text2. * @return LinkedList of Patch objects. */ public LinkedList patch_make(LinkedList diffs) { if (diffs == null) { throw new IllegalArgumentException("Null inputs. (patch_make)"); } // No origin string provided, compute our own. String text1 = diff_text1(diffs); return patch_make(text1, diffs); } /** * Compute a list of patches to turn text1 into text2. * text2 is ignored, diffs are the delta between text1 and text2. * @param text1 Old text * @param text2 Ignored. * @param diffs Array of Diff objects for text1 to text2. * @return LinkedList of Patch objects. * @deprecated Prefer patch_make(String text1, LinkedList diffs). */ public LinkedList patch_make(String text1, String text2, LinkedList diffs) { return patch_make(text1, diffs); } /** * Compute a list of patches to turn text1 into text2. * text2 is not provided, diffs are the delta between text1 and text2. * @param text1 Old text. * @param diffs Array of Diff objects for text1 to text2. * @return LinkedList of Patch objects. */ public LinkedList patch_make(String text1, LinkedList diffs) { if (text1 == null || diffs == null) { throw new IllegalArgumentException("Null inputs. (patch_make)"); } LinkedList patches = new LinkedList(); if (diffs.isEmpty()) { return patches; // Get rid of the null case. } Patch patch = new Patch(); int char_count1 = 0; // Number of characters into the text1 string. int char_count2 = 0; // Number of characters into the text2 string. // Start with text1 (prepatch_text) and apply the diffs until we arrive at // text2 (postpatch_text). We recreate the patches one by one to determine // context info. String prepatch_text = text1; String postpatch_text = text1; for (Diff aDiff : diffs) { if (patch.diffs.isEmpty() && aDiff.operation != Operation.EQUAL) { // A new patch starts here. patch.start1 = char_count1; patch.start2 = char_count2; } switch (aDiff.operation) { case INSERT: patch.diffs.add(aDiff); patch.length2 += aDiff.text.length(); postpatch_text = postpatch_text.substring(0, char_count2) + aDiff.text + postpatch_text.substring(char_count2); break; case DELETE: patch.length1 += aDiff.text.length(); patch.diffs.add(aDiff); postpatch_text = postpatch_text.substring(0, char_count2) + postpatch_text.substring(char_count2 + aDiff.text.length()); break; case EQUAL: if (aDiff.text.length() <= 2 * Patch_Margin && !patch.diffs.isEmpty() && aDiff != diffs.getLast()) { // Small equality inside a patch. patch.diffs.add(aDiff); patch.length1 += aDiff.text.length(); patch.length2 += aDiff.text.length(); } if (aDiff.text.length() >= 2 * Patch_Margin) { // Time for a new patch. if (!patch.diffs.isEmpty()) { patch_addContext(patch, prepatch_text); patches.add(patch); patch = new Patch(); // Unlike Unidiff, our patch lists have a rolling context. // http://code.google.com/p/google-diff-match-patch/wiki/Unidiff // Update prepatch text & pos to reflect the application of the // just completed patch. prepatch_text = postpatch_text; char_count1 = char_count2; } } break; } // Update the current character count. if (aDiff.operation != Operation.INSERT) { char_count1 += aDiff.text.length(); } if (aDiff.operation != Operation.DELETE) { char_count2 += aDiff.text.length(); } } // Pick up the leftover patch if not empty. if (!patch.diffs.isEmpty()) { patch_addContext(patch, prepatch_text); patches.add(patch); } return patches; } /** * Given an array of patches, return another array that is identical. * @param patches Array of Patch objects. * @return Array of Patch objects. */ public LinkedList patch_deepCopy(LinkedList patches) { LinkedList patchesCopy = new LinkedList(); for (Patch aPatch : patches) { Patch patchCopy = new Patch(); for (Diff aDiff : aPatch.diffs) { Diff diffCopy = new Diff(aDiff.operation, aDiff.text); patchCopy.diffs.add(diffCopy); } patchCopy.start1 = aPatch.start1; patchCopy.start2 = aPatch.start2; patchCopy.length1 = aPatch.length1; patchCopy.length2 = aPatch.length2; patchesCopy.add(patchCopy); } return patchesCopy; } /** * Merge a set of patches onto the text. Return a patched text, as well * as an array of true/false values indicating which patches were applied. * @param patches Array of Patch objects * @param text Old text. * @return Two element Object array, containing the new text and an array of * boolean values. */ public Object[] patch_apply(LinkedList patches, String text) { if (patches.isEmpty()) { return new Object[]{text, new boolean[0]}; } // Deep copy the patches so that no changes are made to originals. patches = patch_deepCopy(patches); String nullPadding = patch_addPadding(patches); text = nullPadding + text + nullPadding; patch_splitMax(patches); int x = 0; // delta keeps track of the offset between the expected and actual location // of the previous patch. If there are patches expected at positions 10 and // 20, but the first patch was found at 12, delta is 2 and the second patch // has an effective expected position of 22. int delta = 0; boolean[] results = new boolean[patches.size()]; for (Patch aPatch : patches) { int expected_loc = aPatch.start2 + delta; String text1 = diff_text1(aPatch.diffs); int start_loc; int end_loc = -1; if (text1.length() > this.Match_MaxBits) { // patch_splitMax will only provide an oversized pattern in the case of // a monster delete. start_loc = match_main(text, text1.substring(0, this.Match_MaxBits), expected_loc); if (start_loc != -1) { end_loc = match_main(text, text1.substring(text1.length() - this.Match_MaxBits), expected_loc + text1.length() - this.Match_MaxBits); if (end_loc == -1 || start_loc >= end_loc) { // Can't find valid trailing context. Drop this patch. start_loc = -1; } } } else { start_loc = match_main(text, text1, expected_loc); } if (start_loc == -1) { // No match found. :( results[x] = false; // Subtract the delta for this failed patch from subsequent patches. delta -= aPatch.length2 - aPatch.length1; } else { // Found a match. :) results[x] = true; delta = start_loc - expected_loc; String text2; if (end_loc == -1) { text2 = text.substring(start_loc, Math.min(start_loc + text1.length(), text.length())); } else { text2 = text.substring(start_loc, Math.min(end_loc + this.Match_MaxBits, text.length())); } if (text1.equals(text2)) { // Perfect match, just shove the replacement text in. text = text.substring(0, start_loc) + diff_text2(aPatch.diffs) + text.substring(start_loc + text1.length()); } else { // Imperfect match. Run a diff to get a framework of equivalent // indices. LinkedList diffs = diff_main(text1, text2, false); if (text1.length() > this.Match_MaxBits && diff_levenshtein(diffs) / (float) text1.length() > this.Patch_DeleteThreshold) { // The end points match, but the content is unacceptably bad. results[x] = false; } else { diff_cleanupSemanticLossless(diffs); int index1 = 0; for (Diff aDiff : aPatch.diffs) { if (aDiff.operation != Operation.EQUAL) { int index2 = diff_xIndex(diffs, index1); if (aDiff.operation == Operation.INSERT) { // Insertion text = text.substring(0, start_loc + index2) + aDiff.text + text.substring(start_loc + index2); } else if (aDiff.operation == Operation.DELETE) { // Deletion text = text.substring(0, start_loc + index2) + text.substring(start_loc + diff_xIndex(diffs, index1 + aDiff.text.length())); } } if (aDiff.operation != Operation.DELETE) { index1 += aDiff.text.length(); } } } } } x++; } // Strip the padding off. text = text.substring(nullPadding.length(), text.length() - nullPadding.length()); return new Object[]{text, results}; } /** * Add some padding on text start and end so that edges can match something. * Intended to be called only from within patch_apply. * @param patches Array of Patch objects. * @return The padding string added to each side. */ public String patch_addPadding(LinkedList patches) { short paddingLength = this.Patch_Margin; String nullPadding = ""; for (short x = 1; x <= paddingLength; x++) { nullPadding += String.valueOf((char) x); } // Bump all the patches forward. for (Patch aPatch : patches) { aPatch.start1 += paddingLength; aPatch.start2 += paddingLength; } // Add some padding on start of first diff. Patch patch = patches.getFirst(); LinkedList diffs = patch.diffs; if (diffs.isEmpty() || diffs.getFirst().operation != Operation.EQUAL) { // Add nullPadding equality. diffs.addFirst(new Diff(Operation.EQUAL, nullPadding)); patch.start1 -= paddingLength; // Should be 0. patch.start2 -= paddingLength; // Should be 0. patch.length1 += paddingLength; patch.length2 += paddingLength; } else if (paddingLength > diffs.getFirst().text.length()) { // Grow first equality. Diff firstDiff = diffs.getFirst(); int extraLength = paddingLength - firstDiff.text.length(); firstDiff.text = nullPadding.substring(firstDiff.text.length()) + firstDiff.text; patch.start1 -= extraLength; patch.start2 -= extraLength; patch.length1 += extraLength; patch.length2 += extraLength; } // Add some padding on end of last diff. patch = patches.getLast(); diffs = patch.diffs; if (diffs.isEmpty() || diffs.getLast().operation != Operation.EQUAL) { // Add nullPadding equality. diffs.addLast(new Diff(Operation.EQUAL, nullPadding)); patch.length1 += paddingLength; patch.length2 += paddingLength; } else if (paddingLength > diffs.getLast().text.length()) { // Grow last equality. Diff lastDiff = diffs.getLast(); int extraLength = paddingLength - lastDiff.text.length(); lastDiff.text += nullPadding.substring(0, extraLength); patch.length1 += extraLength; patch.length2 += extraLength; } return nullPadding; } /** * Look through the patches and break up any which are longer than the * maximum limit of the match algorithm. * Intended to be called only from within patch_apply. * @param patches LinkedList of Patch objects. */ public void patch_splitMax(LinkedList patches) { short patch_size = Match_MaxBits; String precontext, postcontext; Patch patch; int start1, start2; boolean empty; Operation diff_type; String diff_text; ListIterator pointer = patches.listIterator(); Patch bigpatch = pointer.hasNext() ? pointer.next() : null; while (bigpatch != null) { if (bigpatch.length1 <= Match_MaxBits) { bigpatch = pointer.hasNext() ? pointer.next() : null; continue; } // Remove the big old patch. pointer.remove(); start1 = bigpatch.start1; start2 = bigpatch.start2; precontext = ""; while (!bigpatch.diffs.isEmpty()) { // Create one of several smaller patches. patch = new Patch(); empty = true; patch.start1 = start1 - precontext.length(); patch.start2 = start2 - precontext.length(); if (precontext.length() != 0) { patch.length1 = patch.length2 = precontext.length(); patch.diffs.add(new Diff(Operation.EQUAL, precontext)); } while (!bigpatch.diffs.isEmpty() && patch.length1 < patch_size - Patch_Margin) { diff_type = bigpatch.diffs.getFirst().operation; diff_text = bigpatch.diffs.getFirst().text; if (diff_type == Operation.INSERT) { // Insertions are harmless. patch.length2 += diff_text.length(); start2 += diff_text.length(); patch.diffs.addLast(bigpatch.diffs.removeFirst()); empty = false; } else if (diff_type == Operation.DELETE && patch.diffs.size() == 1 && patch.diffs.getFirst().operation == Operation.EQUAL && diff_text.length() > 2 * patch_size) { // This is a large deletion. Let it pass in one chunk. patch.length1 += diff_text.length(); start1 += diff_text.length(); empty = false; patch.diffs.add(new Diff(diff_type, diff_text)); bigpatch.diffs.removeFirst(); } else { // Deletion or equality. Only take as much as we can stomach. diff_text = diff_text.substring(0, Math.min(diff_text.length(), patch_size - patch.length1 - Patch_Margin)); patch.length1 += diff_text.length(); start1 += diff_text.length(); if (diff_type == Operation.EQUAL) { patch.length2 += diff_text.length(); start2 += diff_text.length(); } else { empty = false; } patch.diffs.add(new Diff(diff_type, diff_text)); if (diff_text.equals(bigpatch.diffs.getFirst().text)) { bigpatch.diffs.removeFirst(); } else { bigpatch.diffs.getFirst().text = bigpatch.diffs.getFirst().text .substring(diff_text.length()); } } } // Compute the head context for the next patch. precontext = diff_text2(patch.diffs); precontext = precontext.substring(Math.max(0, precontext.length() - Patch_Margin)); // Append the end context for this patch. if (diff_text1(bigpatch.diffs).length() > Patch_Margin) { postcontext = diff_text1(bigpatch.diffs).substring(0, Patch_Margin); } else { postcontext = diff_text1(bigpatch.diffs); } if (postcontext.length() != 0) { patch.length1 += postcontext.length(); patch.length2 += postcontext.length(); if (!patch.diffs.isEmpty() && patch.diffs.getLast().operation == Operation.EQUAL) { patch.diffs.getLast().text += postcontext; } else { patch.diffs.add(new Diff(Operation.EQUAL, postcontext)); } } if (!empty) { pointer.add(patch); } } bigpatch = pointer.hasNext() ? pointer.next() : null; } } /** * Take a list of patches and return a textual representation. * @param patches List of Patch objects. * @return Text representation of patches. */ public String patch_toText(List patches) { StringBuilder text = new StringBuilder(); for (Patch aPatch : patches) { text.append(aPatch); } return text.toString(); } /** * Parse a textual representation of patches and return a List of Patch * objects. * @param textline Text representation of patches. * @return List of Patch objects. * @throws IllegalArgumentException If invalid input. */ public List patch_fromText(String textline) throws IllegalArgumentException { List patches = new LinkedList(); if (textline.length() == 0) { return patches; } List textList = Arrays.asList(textline.split("\n")); LinkedList text = new LinkedList(textList); Patch patch; Pattern patchHeader = Pattern.compile("^@@ -(\\d+),?(\\d*) \\+(\\d+),?(\\d*) @@$"); Matcher m; char sign; String line; while (!text.isEmpty()) { m = patchHeader.matcher(text.getFirst()); if (!m.matches()) { throw new IllegalArgumentException( "Invalid patch string: " + text.getFirst()); } patch = new Patch(); patches.add(patch); patch.start1 = Integer.parseInt(m.group(1)); if (m.group(2).length() == 0) { patch.start1--; patch.length1 = 1; } else if (m.group(2).equals("0")) { patch.length1 = 0; } else { patch.start1--; patch.length1 = Integer.parseInt(m.group(2)); } patch.start2 = Integer.parseInt(m.group(3)); if (m.group(4).length() == 0) { patch.start2--; patch.length2 = 1; } else if (m.group(4).equals("0")) { patch.length2 = 0; } else { patch.start2--; patch.length2 = Integer.parseInt(m.group(4)); } text.removeFirst(); while (!text.isEmpty()) { try { sign = text.getFirst().charAt(0); } catch (IndexOutOfBoundsException e) { // Blank line? Whatever. text.removeFirst(); continue; } line = text.getFirst().substring(1); line = line.replace("+", "%2B"); // decode would change all "+" to " " try { line = URLDecoder.decode(line, "UTF-8"); } catch (UnsupportedEncodingException e) { // Not likely on modern system. throw new Error("This system does not support UTF-8.", e); } catch (IllegalArgumentException e) { // Malformed URI sequence. throw new IllegalArgumentException( "Illegal escape in patch_fromText: " + line, e); } if (sign == '-') { // Deletion. patch.diffs.add(new Diff(Operation.DELETE, line)); } else if (sign == '+') { // Insertion. patch.diffs.add(new Diff(Operation.INSERT, line)); } else if (sign == ' ') { // Minor equality. patch.diffs.add(new Diff(Operation.EQUAL, line)); } else if (sign == '@') { // Start of next patch. break; } else { // WTF? throw new IllegalArgumentException( "Invalid patch mode '" + sign + "' in: " + line); } text.removeFirst(); } } return patches; } /** * Class representing one diff operation. */ public static class Diff { /** * One of: INSERT, DELETE or EQUAL. */ public Operation operation; /** * The text associated with this diff operation. */ public String text; /** * Constructor. Initializes the diff with the provided values. * @param operation One of INSERT, DELETE or EQUAL. * @param text The text being applied. */ public Diff(Operation operation, String text) { // Construct a diff with the specified operation and text. this.operation = operation; this.text = text; } /** * Display a human-readable version of this Diff. * @return text version. */ public String toString() { String prettyText = this.text.replace('\n', '\u00b6'); return "Diff(" + this.operation + ",\"" + prettyText + "\")"; } /** * Create a numeric hash value for a Diff. * This function is not used by DMP. * @return Hash value. */ @Override public int hashCode() { final int prime = 31; int result = (operation == null) ? 0 : operation.hashCode(); result += prime * ((text == null) ? 0 : text.hashCode()); return result; } /** * Is this Diff equivalent to another Diff? * @param obj Another Diff to compare against. * @return true or false. */ @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } Diff other = (Diff) obj; if (operation != other.operation) { return false; } if (text == null) { if (other.text != null) { return false; } } else if (!text.equals(other.text)) { return false; } return true; } } /** * Class representing one patch operation. */ public static class Patch { public LinkedList diffs; public int start1; public int start2; public int length1; public int length2; /** * Constructor. Initializes with an empty list of diffs. */ public Patch() { this.diffs = new LinkedList(); } /** * Emmulate GNU diff's format. * Header: @@ -382,8 +481,9 @@ * Indicies are printed as 1-based, not 0-based. * @return The GNU diff string. */ public String toString() { String coords1, coords2; if (this.length1 == 0) { coords1 = this.start1 + ",0"; } else if (this.length1 == 1) { coords1 = Integer.toString(this.start1 + 1); } else { coords1 = (this.start1 + 1) + "," + this.length1; } if (this.length2 == 0) { coords2 = this.start2 + ",0"; } else if (this.length2 == 1) { coords2 = Integer.toString(this.start2 + 1); } else { coords2 = (this.start2 + 1) + "," + this.length2; } StringBuilder text = new StringBuilder(); text.append("@@ -").append(coords1).append(" +").append(coords2) .append(" @@\n"); // Escape the body of the patch with %xx notation. for (Diff aDiff : this.diffs) { switch (aDiff.operation) { case INSERT: text.append('+'); break; case DELETE: text.append('-'); break; case EQUAL: text.append(' '); break; } try { text.append(URLEncoder.encode(aDiff.text, "UTF-8").replace('+', ' ')) .append("\n"); } catch (UnsupportedEncodingException e) { // Not likely on modern system. throw new Error("This system does not support UTF-8.", e); } } return unescapeForEncodeUriCompatability(text.toString()); } } /** * Unescape selected chars for compatability with JavaScript's encodeURI. * In speed critical applications this could be dropped since the * receiving application will certainly decode these fine. * Note that this function is case-sensitive. Thus "%3f" would not be * unescaped. But this is ok because it is only called with the output of * URLEncoder.encode which returns uppercase hex. * * Example: "%3F" -> "?", "%24" -> "$", etc. * * @param str The string to escape. * @return The escaped string. */ private static String unescapeForEncodeUriCompatability(String str) { return str.replace("%21", "!").replace("%7E", "~") .replace("%27", "'").replace("%28", "(").replace("%29", ")") .replace("%3B", ";").replace("%2F", "/").replace("%3F", "?") .replace("%3A", ":").replace("%40", "@").replace("%26", "&") .replace("%3D", "=").replace("%2B", "+").replace("%24", "$") .replace("%2C", ",").replace("%23", "#"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy