
cc.mallet.fst.confidence.ViterbiRatioConfidenceEstimator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mallet Show documentation
Show all versions of mallet Show documentation
MALLET is a Java-based package for statistical natural language processing,
document classification, clustering, topic modeling, information extraction,
and other machine learning applications to text.
The newest version!
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.
This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).
http://www.cs.umass.edu/~mccallum/mallet
This software is provided under the terms of the Common Public License,
version 1.0, as published by http://www.opensource.org. For further
information, see the file `LICENSE' included with this distribution. */
/**
@author Aron Culotta [email protected]
*/
package cc.mallet.fst.confidence;
import java.util.logging.*;
import java.util.*;
import cc.mallet.fst.*;
import cc.mallet.pipe.iterator.*;
import cc.mallet.types.*;
import cc.mallet.util.MalletLogger;
/**
Estimates the confidence of an entire sequence by the ration of the
probabilities of the first and second best Viterbi paths.
*/
public class ViterbiRatioConfidenceEstimator extends TransducerSequenceConfidenceEstimator
{
private static Logger logger = MalletLogger.getLogger(
SegmentProductConfidenceEstimator.class.getName());
public ViterbiRatioConfidenceEstimator (Transducer model) {
super(model);
}
/**
Calculates the confidence in the tagging of an {@link Instance}.
*/
public double estimateConfidenceFor (Instance instance,
Object[] startTags,
Object[] inTags) {
SumLatticeDefault lattice = new SumLatticeDefault (model, (Sequence)instance.getData());
//ViterbiPathNBest bestViterbis = new ViterbiPathNBest (model, (Sequence)instance.getData(), 2);
//double[] costs = bestViterbis.costNBest();
MaxLatticeDefault vlat = new MaxLatticeDefault (model, (Sequence)instance.getData(), null, 2);
List> alignments = vlat.bestOutputAlignments(2);
double cost1 = alignments.get(0).getWeight();
double cost2 = alignments.get(1).getWeight();
double latticeCost = lattice.getTotalWeight();
return (Math.exp (-cost1 + latticeCost) / Math.exp(-cost2 + latticeCost));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy