
edu.ufl.cise.amd.tdouble.Damd_aat Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of AMDJ Show documentation
Show all versions of AMDJ Show documentation
A set of routines for ordering a sparse matrix prior to Cholesky factorization.
The newest version!
/**
* AMD, Copyright (C) 2009-2011 by Timothy A. Davis, Patrick R. Amestoy,
* and Iain S. Duff. All Rights Reserved.
* Copyright (C) 2011 Richard Lincoln
*
* AMD is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* AMD is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with AMD; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
*/
package edu.ufl.cise.amd.tdouble;
//import static edu.ufl.cise.amd.tdouble.Damd_dump.amd_debug_init;
import static edu.ufl.cise.amd.tdouble.Damd_valid.amd_valid;
/**
* AMD_aat: compute the symmetry of the pattern of A, and count the number of
* nonzeros each column of A+A' (excluding the diagonal). Assumes the input
* matrix has no errors, with sorted columns and no duplicates
* (AMD_valid (n, n, Ap, Ai) must be AMD_OK, but this condition is not
* checked).
*/
public class Damd_aat extends Damd_internal {
/**
*
* @param n
* @param Ap
* @param Ai
* @param Len Len [j]: length of column j of A+A', excl diagonal
* @param Tp workspace of size n
* @param Info
* @return
*/
public static int amd_aat(int n,
final int[] Ap,
final int[] Ai,
int[] Len,
int[] Tp,
double[] Info)
{
int p1, p2, p, i, j, pj, pj2, k, nzdiag, nzboth, nz ;
double sym ;
int nzaat ;
if (!NDEBUG)
{
// amd_debug_init ("AMD AAT") ;
for (k = 0 ; k < n ; k++) Tp [k] = EMPTY ;
ASSERT (amd_valid (n, n, Ap, Ai) == AMD_OK) ;
}
if (Info != null)
{
/* clear the Info array, if it exists */
for (i = 0 ; i < AMD_INFO ; i++)
{
Info [i] = EMPTY ;
}
Info [AMD_STATUS] = AMD_OK ;
}
for (k = 0 ; k < n ; k++)
{
Len [k] = 0 ;
}
nzdiag = 0 ;
nzboth = 0 ;
nz = Ap [n] ;
for (k = 0 ; k < n ; k++)
{
p1 = Ap [k] ;
p2 = Ap [k+1] ;
AMD_DEBUG2 ("\nAAT Column: "+ID+" p1: "+ID+" p2: "+ID+"\n", k, p1, p2) ;
/* construct A+A' */
for (p = p1 ; p < p2 ; )
{
/* scan the upper triangular part of A */
j = Ai [p] ;
if (j < k)
{
/* entry A (j,k) is in the strictly upper triangular part,
* add both A (j,k) and A (k,j) to the matrix A+A' */
Len [j]++ ;
Len [k]++ ;
AMD_DEBUG3 (" upper ("+ID+","+ID+") ("+ID+","+ID+")\n", j,k, k,j);
p++ ;
}
else if (j == k)
{
/* skip the diagonal */
p++ ;
nzdiag++ ;
break ;
}
else /* j > k */
{
/* first entry below the diagonal */
break ;
}
/* scan lower triangular part of A, in column j until reaching
* row k. Start where last scan left off. */
ASSERT (Tp [j] != EMPTY) ;
ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ;
pj2 = Ap [j+1] ;
for (pj = Tp [j] ; pj < pj2 ; )
{
i = Ai [pj] ;
if (i < k)
{
/* A (i,j) is only in the lower part, not in upper.
* add both A (i,j) and A (j,i) to the matrix A+A' */
Len [i]++ ;
Len [j]++ ;
AMD_DEBUG3 (" lower ("+ID+","+ID+") ("+ID+","+ID+")\n",
i,j, j,i) ;
pj++ ;
}
else if (i == k)
{
/* entry A (k,j) in lower part and A (j,k) in upper */
pj++ ;
nzboth++ ;
break ;
}
else /* i > k */
{
/* consider this entry later, when k advances to i */
break ;
}
}
Tp [j] = pj ;
}
/* Tp [k] points to the entry just below the diagonal in column k */
Tp [k] = p ;
}
/* clean up, for remaining mismatched entries */
for (j = 0 ; j < n ; j++)
{
for (pj = Tp [j] ; pj < Ap [j+1] ; pj++)
{
i = Ai [pj] ;
/* A (i,j) is only in the lower part, not in upper.
* add both A (i,j) and A (j,i) to the matrix A+A' */
Len [i]++ ;
Len [j]++ ;
AMD_DEBUG3 (" lower cleanup ("+ID+","+ID+") ("+ID+","+ID+")\n",
i,j, j,i) ;
}
}
/* --------------------------------------------------------------------- */
/* compute the symmetry of the nonzero pattern of A */
/* --------------------------------------------------------------------- */
/* Given a matrix A, the symmetry of A is:
* B = tril (spones (A), -1) + triu (spones (A), 1) ;
* sym = nnz (B & B') / nnz (B) ;
* or 1 if nnz (B) is zero.
*/
if (nz == nzdiag)
{
sym = 1 ;
}
else
{
sym = (2 * (double) nzboth) / ((double) (nz - nzdiag)) ;
}
nzaat = 0 ;
for (k = 0 ; k < n ; k++)
{
nzaat += Len [k] ;
}
AMD_DEBUG1 ("AMD nz in A+A', excluding diagonal (nzaat) = %d\n",
nzaat) ;
AMD_DEBUG1 (" nzboth: "+ID+" nz: "+ID+" nzdiag: "+ID+" symmetry: %.3f\n",
nzboth, nz, nzdiag, sym) ;
if (Info != null)
{
Info [AMD_STATUS] = AMD_OK ;
Info [AMD_N] = n ;
Info [AMD_NZ] = nz ;
Info [AMD_SYMMETRY] = sym ; /* symmetry of pattern of A */
Info [AMD_NZDIAG] = nzdiag ; /* nonzeros on diagonal of A */
Info [AMD_NZ_A_PLUS_AT] = nzaat ; /* nonzeros in A+A' */
}
return (nzaat) ;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy