All Downloads are FREE. Search and download functionalities are using the official Maven repository.

slib.graph.algo.reduction.dag.GraphReduction_DAG_Ranwez_2011 Maven / Gradle / Ivy

/* 
 *  Copyright or © or Copr. Ecole des Mines d'Alès (2012-2014) 
 *  
 *  This software is a computer program whose purpose is to provide 
 *  several functionalities for the processing of semantic data 
 *  sources such as ontologies or text corpora.
 *  
 *  This software is governed by the CeCILL  license under French law and
 *  abiding by the rules of distribution of free software.  You can  use, 
 *  modify and/ or redistribute the software under the terms of the CeCILL
 *  license as circulated by CEA, CNRS and INRIA at the following URL
 *  "http://www.cecill.info". 
 * 
 *  As a counterpart to the access to the source code and  rights to copy,
 *  modify and redistribute granted by the license, users are provided only
 *  with a limited warranty  and the software's author,  the holder of the
 *  economic rights,  and the successive licensors  have only  limited
 *  liability. 

 *  In this respect, the user's attention is drawn to the risks associated
 *  with loading,  using,  modifying and/or developing or reproducing the
 *  software by the user in light of its specific status of free software,
 *  that may mean  that it is complicated to manipulate,  and  that  also
 *  therefore means  that it is reserved for developers  and  experienced
 *  professionals having in-depth computer knowledge. Users are therefore
 *  encouraged to load and test the software's suitability as regards their
 *  requirements in conditions enabling the security of their systems and/or 
 *  data to be ensured and,  more generally, to use and operate it in the 
 *  same conditions as regards security. 
 * 
 *  The fact that you are presently reading this means that you have had
 *  knowledge of the CeCILL license and that you accept its terms.
 */
package slib.graph.algo.reduction.dag;

import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import org.openrdf.model.URI;
import org.openrdf.model.vocabulary.RDFS;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import slib.graph.algo.accessor.GraphAccessor;
import slib.graph.algo.traversal.classical.DFS;
import slib.graph.algo.validator.dag.ValidatorDAG;
import slib.graph.model.graph.G;
import slib.graph.model.graph.elements.E;
import slib.graph.model.graph.utils.Direction;
import slib.graph.model.graph.utils.WalkConstraint;
import slib.graph.utils.WalkConstraintGeneric;
import slib.utils.ex.SLIB_Ex_Critic;
import slib.utils.ex.SLIB_Ex_Warning;
import slib.utils.ex.SLIB_Exception;
import slib.utils.impl.SetUtils;

/**
 * Algorithm used to extract a subgraph from a DAG (Directed Acyclic Graph)
 * 
Implementation of Ranwez et al. 2011 algorithm.
* original paper:
* * Ranwez V, Ranwez S, Janaqi S: Sub-Ontology Extraction Using Hyponym and * Hypernym Closure on is-a Directed Acyclic Graphs. IEEE Transactions on * Knowledge and Data Engineering 2011, 99:1-14. * * @author Sébastien Harispe */ public class GraphReduction_DAG_Ranwez_2011 { private Logger logger = LoggerFactory.getLogger(this.getClass()); G graph; G graph_reduction; Set selectedURIs; Set verticesRed; List traversalOrder; Set predicatesTC; private Set predicatesToAdd; public GraphReduction_DAG_Ranwez_2011(G graph) throws SLIB_Exception { this(graph, SetUtils.buildSet(RDFS.SUBCLASSOF), SetUtils.buildSet(RDFS.SUBCLASSOF), true); } /** * Method used to perform the subGraph extraction of an acyclic graph based * on top-down and bottom-up transitive closures. * * The reduction is performed considering:
*
    *
  • * A set of URIs corresponding to the vertices on which must be based the * reduction. *
  • *
  • * A collection of predicate (edge type). The reduction is based on the * transitive closure considering a top-down and a bottom-up query * extensions considering the given predicates to consider as taxonomic * predicates. *
  • *
* * All directed relationships between of other types of predicates can also * be added between the nodes which compose the reduction (in a * post-treatment). * * * @param graph the graph * @param predicatesTC set of predicates to consider as taxonomic predicate * for the transitive closures * * @param predicateToAdd defines which predicate relationships must be * considered in the post treatment. if nodes x and y compose the reduction * and x,y are linked by a relationship of type p, p must be specified in * the predicateToAdd set in order to specified that the relationship x,p,y * must be expressed in the reduction. * * @param validateDAGproperty boolean if true DAG property of the graph * induced by the given parameters is checked * @throws SLIB_Exception */ public GraphReduction_DAG_Ranwez_2011( G graph, Set predicatesTC, Set predicateToAdd, boolean validateDAGproperty) throws SLIB_Exception { this.graph = graph; this.predicatesTC = predicatesTC; this.predicatesToAdd = predicateToAdd; logger.debug("Selected predicate(s): " + predicatesTC); logger.debug("Predicate to add (post Treatment): " + predicateToAdd); if (validateDAGproperty) { checkGraphProperties(); } } /** * @param selectedURIs * @param g_reduction * @throws SLIB_Ex_Critic * @throws SLIB_Ex_Warning */ public void exec(Set selectedURIs, G g_reduction) throws SLIB_Ex_Critic, SLIB_Ex_Warning { logger.debug("###########################################################################"); logger.debug(selectedURIs.toString()); this.graph_reduction = g_reduction; this.selectedURIs = selectedURIs; verticesRed = new HashSet(); logger.debug("Query composed of " + selectedURIs.size() + " elements"); logger.debug("Edges types " + predicatesTC.size() + " elements"); checkQueryValidity(); computeTraversalRestriction(); // Selection of the vertices part of the reduction for (URI type : predicatesTC) { Set types = SetUtils.buildSet(type); verticesRed.addAll(reduce(traversalOrder, types, Direction.OUT)); logger.debug("Reduction: "+verticesRed); logger.debug("Reduction Vertices : " + verticesRed.size()); } Collections.reverse(traversalOrder); for (URI type : predicatesTC) { Set types = SetUtils.buildSet(type); verticesRed.addAll(reduce(traversalOrder, types, Direction.IN)); logger.debug("Reduction: "+verticesRed); logger.debug("Reduction Vertices : " + verticesRed.size()); } // Bottom Up double vReductionP = 100 - (verticesRed.size() * 100 / graph.getV().size()); //percentage of vertices reduction logger.debug("Reduction Vertices : " + verticesRed.size() + " ( ~" + vReductionP + "% of " + graph.getURI() + ")"); logger.debug("Reduction : " + verticesRed); graph_reduction.addV(verticesRed); Collections.reverse(traversalOrder); logger.debug(traversalOrder.toString()); for (URI e : predicatesTC) { addEdges(traversalOrder, e); } logger.debug("Adding direct edges considering " + predicatesToAdd); logger.debug("Adding direct edges considering " + predicatesToAdd.size() + " eType(s)"); logger.debug("" + predicatesToAdd); // Add Direct edges for (URI v : verticesRed) { Collection edgesV = graph.getE(v, Direction.BOTH); for (E e : edgesV) { if (verticesRed.contains(e.getSource()) && verticesRed.contains(e.getTarget()) && predicatesToAdd.contains(e.getURI())) { graph_reduction.addE(e); } } } double eReductionP = 100 - (graph_reduction.getE().size() * 100 / graph.getE().size()); // same for edges logger.debug("Reduction Edges : " + verticesRed.size() + " ( ~" + (eReductionP) + "% of " + graph.getURI() + ")"); logger.info("Reduction performed"); } private void computeTraversalRestriction() throws SLIB_Ex_Critic { WalkConstraint wc = new WalkConstraintGeneric(); for (URI edgesType : predicatesTC) { wc.addAcceptedTraversal(edgesType, Direction.IN); } Set roots = new HashSet(); for (URI uri : GraphAccessor.getClasses(graph)) { boolean valid = true; for (URI p : predicatesTC) { if (!graph.getE(p, uri, Direction.OUT).isEmpty()) { // the URI doesn't refer to a root valid = false; } } if (valid) { roots.add(uri); } } if (roots.isEmpty()) { throw new SLIB_Ex_Critic("Cannot identify any root..."); } DFS dfs = new DFS(graph, roots, wc); traversalOrder = dfs.getTraversalOrder(); // rootID as last element } private void addEdges(List traversalOrder, URI edgeType) { logger.debug("-------------------------------------------------"); logger.debug("-------------------------------------------------"); logger.debug("Adding Edges of transitive type : " + edgeType); logger.debug("verticesRed : " + verticesRed); logger.debug("Starting from : " + traversalOrder.get(0)); HashMap> vrra = new HashMap>(); for (int i = 0; i < traversalOrder.size(); i++) { URI u = traversalOrder.get(i); // logger.debug("**************** Processing : " + u); // leaf or root init if (!vrra.containsKey(u)) { vrra.put(u, new HashSet()); } // logger.debug("Set : " + vrra.get(u)); if (verticesRed.contains(u)) { for (URI r : vrra.get(u)) { URI source = u; URI target = r; graph_reduction.addE(target, edgeType, source); // logger.debug("\tAdding edge... " + target + " " + edgeType + " " + source); } vrra.put(u, new HashSet()); vrra.get(u).add(u); } Collection edges = graph.getE(edgeType, u, Direction.OUT); for (E e : edges) { URI f = e.getTarget(); if (!vrra.containsKey(f)) { vrra.put(f, new HashSet()); } vrra.put(f, SetUtils.union(vrra.get(u), vrra.get(f))); if (verticesRed.contains(u)) { vrra.get(f).add(u); } } } } /** * Retrieve the vertices selected during a reduction Used to perform * top-down and bottom up expansion of the query vertices * * @param order an ArrayList of IVertex vertices order to consider during * the expansion first element treated first * @param edgeTypes a Collection of edge type used for the expansion * @return a collection of vertices corresponding to the expansion of the * query */ private Set reduce(List order, Set edgeTypes, Direction dir) { logger.debug("-----------------------------------------------------------"); logger.debug("'Transitive Closure' considering EdgeTypes : " + edgeTypes); logger.debug("Direction: " + dir); logger.debug("Propogation started from : " + order.get(0)); logger.debug("Size traversal ordering: "+order.size()); Map> sd = new HashMap>(order.size()); Map maxSd = new HashMap(); Set verticesReduction = new HashSet(); for (URI v : order) { sd.put(v, new HashSet()); maxSd.put(v, 0); } for (URI v : order) { if (selectedURIs.contains(v)) { sd.get(v).add(v); } // logger.debug("* "+v+" max single gain: "+maxSd.get(v)+" total gain: "+sd.get(v).size()); if (sd.get(v).size() > maxSd.get(v)) { verticesReduction.add(v); // logger.debug("- Add "+v); sd.get(v).add(v); } for (E e : graph.getE(edgeTypes, v, dir)) { URI t; if(dir == Direction.OUT){ t = e.getTarget(); } else{ t = e.getSource(); } // check that the vertex is contained in the traversal // restriction defined by the root selected if (sd.containsKey(t)) { Set union = new HashSet(SetUtils.union(sd.get(t), sd.get(v))); sd.put(t, union); maxSd.put(t, Math.max(sd.get(v).size(), maxSd.get(t))); } } } logger.debug(" "+verticesReduction.toString()); logger.debug("-reduction contains "+verticesReduction.size()); return verticesReduction; } /** * Check the parameters of the current configuration * * @throws SLIB_Ex_Critic * @throws SLIB_Ex_Warning */ private void checkQueryValidity() throws SLIB_Ex_Critic, SLIB_Ex_Warning { if (selectedURIs == null || selectedURIs.size() < 2) { throw new SLIB_Ex_Warning("Warning: Query skipped, a minimim of two URI have to be specified to build a query"); } for (URI uri : selectedURIs) { if (!graph.containsVertex(uri)) { throw new SLIB_Ex_Warning("No vertex associated to URI: " + uri); } } } private void checkGraphProperties() throws SLIB_Ex_Critic { logger.debug("Checking DAG property"); ValidatorDAG vdag = new ValidatorDAG(); WalkConstraint wc = new WalkConstraintGeneric(); for (URI edgeType : predicatesTC) { wc.addAcceptedTraversal(edgeType, Direction.IN); } boolean isDag = vdag.isDag(graph, wc); logger.debug("is DAG: " + isDag); if (!isDag) { throw new SLIB_Ex_Critic( "Treatment can only be performed on a DAG, traversal " + "respecting your parameters define a cyclic graph."); } // ValidatorDAG validator = new ValidatorDAG(); // // boolean uniqueRoot = validator.isUniqueRootedTaxonomicDag(graph, rootURI); // // if (!uniqueRoot) { // logger.info("Specified root is not a unique Root: " + rootVertex); // logger.info("Roots : " + validator.getTaxonomicDAGRoots(graph)); // } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy