All Downloads are FREE. Search and download functionalities are using the official Maven repository.

sviolet.thistle.compat.CompatLinkedBlockingDeque Maven / Gradle / Ivy

/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package sviolet.thistle.compat;

import java.util.AbstractQueue;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.concurrent.BlockingDeque;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

// BEGIN android-note
// removed link to collections framework docs
// END android-note

/**
 * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
 * linked nodes.
 *
 * 

The optional capacity bound constructor argument serves as a * way to prevent excessive expansion. The capacity, if unspecified, * is equal to {@link Integer#MAX_VALUE}. Linked nodes are * dynamically created upon each insertion unless this would bring the * deque above capacity. * *

Most operations run in constant time (ignoring time spent * blocking). Exceptions include {@link #remove(Object) remove}, * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link * #removeLastOccurrence removeLastOccurrence}, {@link #contains * contains}, {@link #iterator iterator.remove()}, and the bulk * operations, all of which run in linear time. * *

This class and its iterator implement all of the * optional methods of the {@link Collection} and {@link * Iterator} interfaces. * * @since 1.6 * @author Doug Lea * @param the type of elements held in this collection */ public class CompatLinkedBlockingDeque extends AbstractQueue implements BlockingDeque, java.io.Serializable { /* * Implemented as a simple doubly-linked list protected by a * single lock and using conditions to manage blocking. * * To implement weakly consistent iterators, it appears we need to * keep all Nodes GC-reachable from a predecessor dequeued Node. * That would cause two problems: * - allow a rogue Iterator to cause unbounded memory retention * - cause cross-generational linking of old Nodes to new Nodes if * a Node was tenured while live, which generational GCs have a * hard time dealing with, causing repeated major collections. * However, only non-deleted Nodes need to be reachable from * dequeued Nodes, and reachability does not necessarily have to * be of the kind understood by the GC. We use the trick of * linking a Node that has just been dequeued to itself. Such a * self-link implicitly means to jump to "first" (for next links) * or "last" (for prev links). */ /* * We have "diamond" multiple interface/abstract class inheritance * here, and that introduces ambiguities. Often we want the * BlockingDeque javadoc combined with the AbstractQueue * implementation, so a lot of method specs are duplicated here. */ private static final long serialVersionUID = -387911632671998426L; /** Doubly-linked list node class */ protected static final class Node { /** * The item, or null if this node has been removed. */ public E item; /** * One of: * - the real predecessor Node * - this Node, meaning the predecessor is tail * - null, meaning there is no predecessor */ public Node prev; /** * One of: * - the real successor Node * - this Node, meaning the successor is head * - null, meaning there is no successor */ public Node next; public Node(E x) { item = x; } } /** * Pointer to first node. * Invariant: (first == null && last == null) || * (first.prev == null && first.item != null) */ protected transient Node first; /** * Pointer to last node. * Invariant: (first == null && last == null) || * (last.next == null && last.item != null) */ protected transient Node last; /** Number of items in the deque */ protected transient int count; /** Maximum number of items in the deque */ protected final int capacity; /** Main lock guarding all access */ protected final ReentrantLock lock = new ReentrantLock(); /** Condition for waiting takes */ protected final Condition notEmpty = lock.newCondition(); /** Condition for waiting puts */ protected final Condition notFull = lock.newCondition(); /** * Creates a {@code CompatLinkedBlockingDeque} with a capacity of * {@link Integer#MAX_VALUE}. */ public CompatLinkedBlockingDeque() { this(Integer.MAX_VALUE); } /** * Creates a {@code CompatLinkedBlockingDeque} with the given (fixed) capacity. * * @param capacity the capacity of this deque * @throws IllegalArgumentException if {@code capacity} is less than 1 */ public CompatLinkedBlockingDeque(int capacity) { if (capacity <= 0) { throw new IllegalArgumentException(); } this.capacity = capacity; } /** * Creates a {@code CompatLinkedBlockingDeque} with a capacity of * {@link Integer#MAX_VALUE}, initially containing the elements of * the given collection, added in traversal order of the * collection's iterator. * * @param c the collection of elements to initially contain * @throws NullPointerException if the specified collection or any * of its elements are null */ public CompatLinkedBlockingDeque(Collection c) { this(Integer.MAX_VALUE); final ReentrantLock lock = this.lock; lock.lock(); // Never contended, but necessary for visibility try { for (E e : c) { if (e == null) { throw new NullPointerException(); } if (!linkLast(new Node(e))) { throw new IllegalStateException("Deque full"); } } } finally { lock.unlock(); } } // Basic linking and unlinking operations, called only while holding lock /** * Links node as first element, or returns false if full. */ protected boolean linkFirst(Node node) { // assert lock.isHeldByCurrentThread(); if (count >= capacity) { return false; } Node f = first; node.next = f; first = node; if (last == null) { last = node; } else { f.prev = node; } ++count; notEmpty.signal(); return true; } /** * Links node as last element, or returns false if full. */ protected boolean linkLast(Node node) { // assert lock.isHeldByCurrentThread(); if (count >= capacity) { return false; } Node l = last; node.prev = l; last = node; if (first == null) { first = node; } else { l.next = node; } ++count; notEmpty.signal(); return true; } /** * Removes and returns first element, or null if empty. */ protected E unlinkFirst() { // assert lock.isHeldByCurrentThread(); Node f = first; if (f == null) { return null; } Node n = f.next; E item = f.item; f.item = null; // help GC f.next = f; first = n; if (n == null) { last = null; } else { n.prev = null; } --count; notFull.signal(); return item; } /** * Removes and returns last element, or null if empty. */ protected E unlinkLast() { // assert lock.isHeldByCurrentThread(); Node l = last; if (l == null) { return null; } Node p = l.prev; E item = l.item; l.item = null; // help GC l.prev = l; last = p; if (p == null) { first = null; }else { p.next = null; } --count; notFull.signal(); return item; } /** * Unlinks x. */ protected void unlink(Node x) { // assert lock.isHeldByCurrentThread(); Node p = x.prev; Node n = x.next; if (p == null) { unlinkFirst(); } else if (n == null) { unlinkLast(); } else { p.next = n; n.prev = p; x.item = null; // Don't mess with x's links. They may still be in use by // an iterator. --count; notFull.signal(); } } // BlockingDeque methods /** * @throws IllegalStateException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ @Override public void addFirst(E e) { if (!offerFirst(e)) { throw new IllegalStateException("Deque full"); } } /** * @throws IllegalStateException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ @Override public void addLast(E e) { if (!offerLast(e)) { throw new IllegalStateException("Deque full"); } } /** * @throws NullPointerException {@inheritDoc} */ @Override public boolean offerFirst(E e) { if (e == null) { throw new NullPointerException(); } Node node = new Node(e); final ReentrantLock lock = this.lock; lock.lock(); try { return linkFirst(node); } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} */ @Override public boolean offerLast(E e) { if (e == null) { throw new NullPointerException(); } Node node = new Node(e); final ReentrantLock lock = this.lock; lock.lock(); try { return linkLast(node); } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public void putFirst(E e) throws InterruptedException { if (e == null) { throw new NullPointerException(); } Node node = new Node(e); final ReentrantLock lock = this.lock; lock.lock(); try { while (!linkFirst(node)) { notFull.await(); } } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public void putLast(E e) throws InterruptedException { if (e == null) { throw new NullPointerException(); } Node node = new Node(e); final ReentrantLock lock = this.lock; lock.lock(); try { while (!linkLast(node)) { notFull.await(); } } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public boolean offerFirst(E e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) { throw new NullPointerException(); } Node node = new Node(e); long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (!linkFirst(node)) { if (nanos <= 0) { return false; } nanos = notFull.awaitNanos(nanos); } return true; } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public boolean offerLast(E e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) { throw new NullPointerException(); } Node node = new Node(e); long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (!linkLast(node)) { if (nanos <= 0) { return false; } nanos = notFull.awaitNanos(nanos); } return true; } finally { lock.unlock(); } } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E removeFirst() { E x = pollFirst(); if (x == null) { throw new NoSuchElementException(); } return x; } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E removeLast() { E x = pollLast(); if (x == null) { throw new NoSuchElementException(); } return x; } @Override public E pollFirst() { final ReentrantLock lock = this.lock; lock.lock(); try { return unlinkFirst(); } finally { lock.unlock(); } } @Override public E pollLast() { final ReentrantLock lock = this.lock; lock.lock(); try { return unlinkLast(); } finally { lock.unlock(); } } @Override public E takeFirst() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lock(); try { E x; while ( (x = unlinkFirst()) == null) { notEmpty.await(); } return x; } finally { lock.unlock(); } } @Override public E takeLast() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lock(); try { E x; while ( (x = unlinkLast()) == null) { notEmpty.await(); } return x; } finally { lock.unlock(); } } @Override public E pollFirst(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { E x; while ( (x = unlinkFirst()) == null) { if (nanos <= 0) { return null; } nanos = notEmpty.awaitNanos(nanos); } return x; } finally { lock.unlock(); } } @Override public E pollLast(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { E x; while ( (x = unlinkLast()) == null) { if (nanos <= 0) { return null; } nanos = notEmpty.awaitNanos(nanos); } return x; } finally { lock.unlock(); } } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E getFirst() { E x = peekFirst(); if (x == null) { throw new NoSuchElementException(); } return x; } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E getLast() { E x = peekLast(); if (x == null) { throw new NoSuchElementException(); } return x; } @Override public E peekFirst() { final ReentrantLock lock = this.lock; lock.lock(); try { return (first == null) ? null : first.item; } finally { lock.unlock(); } } @Override public E peekLast() { final ReentrantLock lock = this.lock; lock.lock(); try { return (last == null) ? null : last.item; } finally { lock.unlock(); } } @Override public boolean removeFirstOccurrence(Object o) { if (o == null) { return false; } final ReentrantLock lock = this.lock; lock.lock(); try { for (Node p = first; p != null; p = p.next) { if (o.equals(p.item)) { unlink(p); return true; } } return false; } finally { lock.unlock(); } } @Override public boolean removeLastOccurrence(Object o) { if (o == null) { return false; } final ReentrantLock lock = this.lock; lock.lock(); try { for (Node p = last; p != null; p = p.prev) { if (o.equals(p.item)) { unlink(p); return true; } } return false; } finally { lock.unlock(); } } // BlockingQueue methods /** * Inserts the specified element at the end of this deque unless it would * violate capacity restrictions. When using a capacity-restricted deque, * it is generally preferable to use method {@link #offer(Object) offer}. * *

This method is equivalent to {@link #addLast}. * * @throws IllegalStateException if the element cannot be added at this * time due to capacity restrictions * @throws NullPointerException if the specified element is null */ @Override public boolean add(E e) { addLast(e); return true; } /** * @throws NullPointerException if the specified element is null */ @Override public boolean offer(E e) { return offerLast(e); } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public void put(E e) throws InterruptedException { putLast(e); } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { return offerLast(e, timeout, unit); } /** * Retrieves and removes the head of the queue represented by this deque. * This method differs from {@link #poll poll} only in that it throws an * exception if this deque is empty. * *

This method is equivalent to {@link #removeFirst() removeFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ @Override public E remove() { return removeFirst(); } @Override public E poll() { return pollFirst(); } @Override public E take() throws InterruptedException { return takeFirst(); } @Override public E poll(long timeout, TimeUnit unit) throws InterruptedException { return pollFirst(timeout, unit); } /** * Retrieves, but does not remove, the head of the queue represented by * this deque. This method differs from {@link #peek peek} only in that * it throws an exception if this deque is empty. * *

This method is equivalent to {@link #getFirst() getFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ @Override public E element() { return getFirst(); } @Override public E peek() { return peekFirst(); } /** * Returns the number of additional elements that this deque can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this deque * less the current {@code size} of this deque. * *

Note that you cannot always tell if an attempt to insert * an element will succeed by inspecting {@code remainingCapacity} * because it may be the case that another thread is about to * insert or remove an element. */ @Override public int remainingCapacity() { final ReentrantLock lock = this.lock; lock.lock(); try { return capacity - count; } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ @Override public int drainTo(Collection c) { return drainTo(c, Integer.MAX_VALUE); } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ @Override public int drainTo(Collection c, int maxElements) { if (c == null) { throw new NullPointerException(); } if (c == this) { throw new IllegalArgumentException(); } if (maxElements <= 0) { return 0; } final ReentrantLock lock = this.lock; lock.lock(); try { int n = Math.min(maxElements, count); for (int i = 0; i < n; i++) { // In this order, in case add() throws. c.add(first.item); unlinkFirst(); } return n; } finally { lock.unlock(); } } // Stack methods /** * @throws IllegalStateException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ @Override public void push(E e) { addFirst(e); } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E pop() { return removeFirst(); } // Collection methods /** * Removes the first occurrence of the specified element from this deque. * If the deque does not contain the element, it is unchanged. * More formally, removes the first element {@code e} such that * {@code o.equals(e)} (if such an element exists). * Returns {@code true} if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * *

This method is equivalent to * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}. * * @param o element to be removed from this deque, if present * @return {@code true} if this deque changed as a result of the call */ @Override public boolean remove(Object o) { return removeFirstOccurrence(o); } /** * Returns the number of elements in this deque. * * @return the number of elements in this deque */ @Override public int size() { final ReentrantLock lock = this.lock; lock.lock(); try { return count; } finally { lock.unlock(); } } /** * Returns {@code true} if this deque contains the specified element. * More formally, returns {@code true} if and only if this deque contains * at least one element {@code e} such that {@code o.equals(e)}. * * @param o object to be checked for containment in this deque * @return {@code true} if this deque contains the specified element */ @Override public boolean contains(Object o) { if (o == null) { return false; } final ReentrantLock lock = this.lock; lock.lock(); try { for (Node p = first; p != null; p = p.next) { if (o.equals(p.item)) { return true; } } return false; } finally { lock.unlock(); } } /* * * We don't want to acquire the lock for every iteration, but we * also want other threads a chance to interact with the * collection, especially when count is close to capacity. */ // /** // * Adds all of the elements in the specified collection to this // * queue. Attempts to addAll of a queue to itself result in // * {@code IllegalArgumentException}. Further, the behavior of // * this operation is undefined if the specified collection is // * modified while the operation is in progress. // * // * @param c collection containing elements to be added to this queue // * @return {@code true} if this queue changed as a result of the call // * @throws ClassCastException {@inheritDoc} // * @throws NullPointerException {@inheritDoc} // * @throws IllegalArgumentException {@inheritDoc} // * @throws IllegalStateException {@inheritDoc} // * @see #add(Object) // */ // public boolean addAll(Collection c) { // if (c == null) // throw new NullPointerException(); // if (c == this) // throw new IllegalArgumentException(); // final ReentrantLock lock = this.lock; // lock.lock(); // try { // boolean modified = false; // for (E e : c) // if (linkLast(e)) // modified = true; // return modified; // } finally { // lock.unlock(); // } // } /** * Returns an array containing all of the elements in this deque, in * proper sequence (from first to last element). * *

The returned array will be "safe" in that no references to it are * maintained by this deque. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this deque */ @SuppressWarnings("unchecked") @Override public Object[] toArray() { final ReentrantLock lock = this.lock; lock.lock(); try { Object[] a = new Object[count]; int k = 0; for (Node p = first; p != null; p = p.next) { a[k++] = p.item; } return a; } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this deque, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the deque fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this deque. * *

If this deque fits in the specified array with room to spare * (i.e., the array has more elements than this deque), the element in * the array immediately following the end of the deque is set to * {@code null}. * *

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *

Suppose {@code x} is a deque known to contain only strings. * The following code can be used to dump the deque into a newly * allocated array of {@code String}: * *

 {@code String[] y = x.toArray(new String[0]);}
* * Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the deque are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this deque * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this deque * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") @Override public T[] toArray(T[] a) { final ReentrantLock lock = this.lock; lock.lock(); try { if (a.length < count) { a = (T[]) java.lang.reflect.Array.newInstance (a.getClass().getComponentType(), count); } int k = 0; for (Node p = first; p != null; p = p.next) { a[k++] = (T) p.item; } if (a.length > k) { a[k] = null; } return a; } finally { lock.unlock(); } } @Override public String toString() { final ReentrantLock lock = this.lock; lock.lock(); try { Node p = first; if (p == null) { return "[]"; } StringBuilder sb = new StringBuilder(); sb.append('['); for (;;) { E e = p.item; sb.append(e == this ? "(this Collection)" : e); p = p.next; if (p == null) { return sb.append(']').toString(); } sb.append(',').append(' '); } } finally { lock.unlock(); } } /** * Atomically removes all of the elements from this deque. * The deque will be empty after this call returns. */ @Override public void clear() { final ReentrantLock lock = this.lock; lock.lock(); try { for (Node f = first; f != null; ) { f.item = null; Node n = f.next; f.prev = null; f.next = null; f = n; } first = last = null; count = 0; notFull.signalAll(); } finally { lock.unlock(); } } /** * Returns an iterator over the elements in this deque in proper sequence. * The elements will be returned in order from first (head) to last (tail). * *

The returned iterator is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException * ConcurrentModificationException}, and guarantees to traverse * elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications * subsequent to construction. * * @return an iterator over the elements in this deque in proper sequence */ @Override public Iterator iterator() { return new Itr(); } /** * Returns an iterator over the elements in this deque in reverse * sequential order. The elements will be returned in order from * last (tail) to first (head). * *

The returned iterator is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException * ConcurrentModificationException}, and guarantees to traverse * elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications * subsequent to construction. * * @return an iterator over the elements in this deque in reverse order */ @Override public Iterator descendingIterator() { return new DescendingItr(); } /** * Base class for Iterators for CompatLinkedBlockingDeque */ private abstract class AbstractItr implements Iterator { /** * The next node to return in next() */ Node next; /** * nextItem holds on to item fields because once we claim that * an element exists in hasNext(), we must return item read * under lock (in advance()) even if it was in the process of * being removed when hasNext() was called. */ E nextItem; /** * Node returned by most recent call to next. Needed by remove. * Reset to null if this element is deleted by a call to remove. */ private Node lastRet; /** * first node * @return first node */ abstract Node firstNode(); /** * next node * @param n node * @return next node */ abstract Node nextNode(Node n); AbstractItr() { // set to initial position final ReentrantLock lock = CompatLinkedBlockingDeque.this.lock; lock.lock(); try { next = firstNode(); nextItem = (next == null) ? null : next.item; } finally { lock.unlock(); } } /** * Returns the successor node of the given non-null, but * possibly previously deleted, node. */ private Node succ(Node n) { // Chains of deleted nodes ending in null or self-links // are possible if multiple interior nodes are removed. for (;;) { Node s = nextNode(n); if (s == null) { return null; } else if (s.item != null) { return s; } else if (s == n) { return firstNode(); } else { n = s; } } } /** * Advances next. */ void advance() { final ReentrantLock lock = CompatLinkedBlockingDeque.this.lock; lock.lock(); try { // assert next != null; next = succ(next); nextItem = (next == null) ? null : next.item; } finally { lock.unlock(); } } @Override public boolean hasNext() { return next != null; } @Override public E next() { if (next == null) { throw new NoSuchElementException(); } lastRet = next; E x = nextItem; advance(); return x; } @Override public void remove() { Node n = lastRet; if (n == null) { throw new IllegalStateException(); } lastRet = null; final ReentrantLock lock = CompatLinkedBlockingDeque.this.lock; lock.lock(); try { if (n.item != null) { unlink(n); } } finally { lock.unlock(); } } } /** Forward iterator */ private class Itr extends AbstractItr { @Override Node firstNode() { return first; } @Override Node nextNode(Node n) { return n.next; } } /** Descending iterator */ private class DescendingItr extends AbstractItr { @Override Node firstNode() { return last; } @Override Node nextNode(Node n) { return n.prev; } } /** * Saves this deque to a stream (that is, serializes it). * * @serialData The capacity (int), followed by elements (each an * {@code Object}) in the proper order, followed by a null */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final ReentrantLock lock = this.lock; lock.lock(); try { // Write out capacity and any hidden stuff s.defaultWriteObject(); // Write out all elements in the proper order. for (Node p = first; p != null; p = p.next) { s.writeObject(p.item); } // Use trailing null as sentinel s.writeObject(null); } finally { lock.unlock(); } } /** * Reconstitutes this deque from a stream (that is, deserializes it). */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); count = 0; first = null; last = null; // Read in all elements and place in queue for (;;) { @SuppressWarnings("unchecked") E item = (E)s.readObject(); if (item == null) { break; } add(item); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy