All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gnu.crypto.util.Util Maven / Gradle / Ivy

There is a newer version: 3.5.1
Show newest version
package gnu.crypto.util;

// ----------------------------------------------------------------------------
// $Id: Util.java,v 1.10 2003/09/27 00:03:01 raif Exp $
//
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING.  If not, write to the
//
//    Free Software Foundation Inc.,
//    59 Temple Place - Suite 330,
//    Boston, MA 02111-1307
//    USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module.  An independent module is a module which is
// not derived from or based on this library.  If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so.  If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------
import java.math.BigInteger;

/**
 * 

* A collection of utility methods used throughout this project.

* * @version $Revision: 1.10 $ */ public class Util { // Constants and variables // ------------------------------------------------------------------------- // Hex charset private static final char[] HEX_DIGITS = "0123456789ABCDEF".toCharArray(); // Base-64 charset private static final String BASE64_CHARS = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz./"; private static final char[] BASE64_CHARSET = BASE64_CHARS.toCharArray(); // Constructor(s) // ------------------------------------------------------------------------- /** * Trivial constructor to enforce Singleton pattern. */ private Util() { super(); } // Class methods // ------------------------------------------------------------------------- /** *

* Returns a string of hexadecimal digits from a byte array. Each byte is * converted to 2 hex symbols; zero(es) included.

* *

* This method calls the method with same name and three arguments as:

* *
     *    toString(ba, 0, ba.length);
     * 
* * @param ba the byte array to convert. * @return a string of hexadecimal characters (two for each byte) * representing the designated input byte array. */ public static String toString(byte[] ba) { return toString(ba, 0, ba.length); } /** *

* Returns a string of hexadecimal digits from a byte array, starting at * offset and consisting of length bytes. Each * byte is converted to 2 hex symbols; zero(es) included.

* * @param ba the byte array to convert. * @param offset the index from which to start considering the bytes to * convert. * @param length the count of bytes, starting from the designated offset to * convert. * @return a string of hexadecimal characters (two for each byte) * representing the designated input byte sub-array. */ public static final String toString(byte[] ba, int offset, int length) { char[] buf = new char[length * 2]; for (int i = 0, j = 0, k; i < length;) { k = ba[offset + i++]; buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F]; buf[j++] = HEX_DIGITS[k & 0x0F]; } return new String(buf); } /** *

* Returns a string of hexadecimal digits from a byte array. Each byte is * converted to 2 hex symbols; zero(es) included. The argument is treated as * a large little-endian integer and is returned as a large big-endian * integer.

* *

* This method calls the method with same name and three arguments as:

* *
     *    toReversedString(ba, 0, ba.length);
     * 
* * @param ba the byte array to convert. * @return a string of hexadecimal characters (two for each byte) * representing the designated input byte array. */ public static String toReversedString(byte[] ba) { return toReversedString(ba, 0, ba.length); } /** *

* Returns a string of hexadecimal digits from a byte array, starting at * offset and consisting of length bytes. Each * byte is converted to 2 hex symbols; zero(es) included.

* *

* The byte array is treated as a large little-endian integer, and is * returned as a large big-endian integer.

* * @param ba the byte array to convert. * @param offset the index from which to start considering the bytes to * convert. * @param length the count of bytes, starting from the designated offset to * convert. * @return a string of hexadecimal characters (two for each byte) * representing the designated input byte sub-array. */ public static final String toReversedString(byte[] ba, int offset, int length) { char[] buf = new char[length * 2]; for (int i = offset + length - 1, j = 0, k; i >= offset;) { k = ba[offset + i--]; buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F]; buf[j++] = HEX_DIGITS[k & 0x0F]; } return new String(buf); } /** *

* Returns a byte array from a string of hexadecimal digits.

* * @param s a string of hexadecimal ASCII characters * @return the decoded byte array from the input hexadecimal string. */ public static byte[] toBytesFromString(String s) { int limit = s.length(); byte[] result = new byte[((limit + 1) / 2)]; int i = 0, j = 0; if ((limit % 2) == 1) { result[j++] = (byte) fromDigit(s.charAt(i++)); } while (i < limit) { result[j] = (byte) (fromDigit(s.charAt(i++)) << 4); result[j++] |= (byte) fromDigit(s.charAt(i++)); } return result; } /** *

* Returns a byte array from a string of hexadecimal digits, interpreting * them as a large big-endian integer and returning it as a large * little-endian integer.

* * @param s a string of hexadecimal ASCII characters * @return the decoded byte array from the input hexadecimal string. */ public static byte[] toReversedBytesFromString(String s) { int limit = s.length(); byte[] result = new byte[((limit + 1) / 2)]; int i = 0; if ((limit % 2) == 1) { result[i++] = (byte) fromDigit(s.charAt(--limit)); } while (limit > 0) { result[i] = (byte) fromDigit(s.charAt(--limit)); result[i++] |= (byte) (fromDigit(s.charAt(--limit)) << 4); } return result; } /** *

* Returns a number from 0 to 15 corresponding to * the designated hexadecimal digit.

* * @param c a hexadecimal ASCII symbol. */ public static int fromDigit(char c) { if (c >= '0' && c <= '9') { return c - '0'; } else if (c >= 'A' && c <= 'F') { return c - 'A' + 10; } else if (c >= 'a' && c <= 'f') { return c - 'a' + 10; } else { throw new IllegalArgumentException("Invalid hexadecimal digit: " + c); } } /** *

* Returns a string of 8 hexadecimal digits (most significant digit first) * corresponding to the unsigned integer n.

* * @param n the unsigned integer to convert. * @return a hexadecimal string 8-character long. */ public static String toString(int n) { char[] buf = new char[8]; for (int i = 7; i >= 0; i--) { buf[i] = HEX_DIGITS[n & 0x0F]; n >>>= 4; } return new String(buf); } /** *

* Returns a string of hexadecimal digits from an integer array. Each int is * converted to 4 hex symbols.

*/ public static String toString(int[] ia) { int length = ia.length; char[] buf = new char[length * 8]; for (int i = 0, j = 0, k; i < length; i++) { k = ia[i]; buf[j++] = HEX_DIGITS[(k >>> 28) & 0x0F]; buf[j++] = HEX_DIGITS[(k >>> 24) & 0x0F]; buf[j++] = HEX_DIGITS[(k >>> 20) & 0x0F]; buf[j++] = HEX_DIGITS[(k >>> 16) & 0x0F]; buf[j++] = HEX_DIGITS[(k >>> 12) & 0x0F]; buf[j++] = HEX_DIGITS[(k >>> 8) & 0x0F]; buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F]; buf[j++] = HEX_DIGITS[k & 0x0F]; } return new String(buf); } /** *

* Returns a string of 16 hexadecimal digits (most significant digit first) * corresponding to the unsigned long n.

* * @param n the unsigned long to convert. * @return a hexadecimal string 16-character long. */ public static String toString(long n) { char[] b = new char[16]; for (int i = 15; i >= 0; i--) { b[i] = HEX_DIGITS[(int) (n & 0x0FL)]; n >>>= 4; } return new String(b); } /** *

* Similar to the toString() method except that the Unicode * escape character is inserted before every pair of bytes. Useful to * externalise byte arrays that will be constructed later from such strings; * eg. s-box values.

* * @throws ArrayIndexOutOfBoundsException if the length is odd. */ public static String toUnicodeString(byte[] ba) { return toUnicodeString(ba, 0, ba.length); } /** *

* Similar to the toString() method except that the Unicode * escape character is inserted before every pair of bytes. Useful to * externalise byte arrays that will be constructed later from such strings; * eg. s-box values.

* * @throws ArrayIndexOutOfBoundsException if the length is odd. */ public static final String toUnicodeString(byte[] ba, int offset, int length) { StringBuffer sb = new StringBuffer(); int i = 0; int j = 0; int k; sb.append('\n').append("\""); while (i < length) { sb.append("\\u"); k = ba[offset + i++]; sb.append(HEX_DIGITS[(k >>> 4) & 0x0F]); sb.append(HEX_DIGITS[k & 0x0F]); k = ba[offset + i++]; sb.append(HEX_DIGITS[(k >>> 4) & 0x0F]); sb.append(HEX_DIGITS[k & 0x0F]); if ((++j % 8) == 0) { sb.append("\"+").append('\n').append("\""); } } sb.append("\"").append('\n'); return sb.toString(); } /** *

* Similar to the toString() method except that the Unicode * escape character is inserted before every pair of bytes. Useful to * externalise integer arrays that will be constructed later from such * strings; eg. s-box values.

* * @throws ArrayIndexOutOfBoundsException if the length is not a multiple of * 4. */ public static String toUnicodeString(int[] ia) { StringBuffer sb = new StringBuffer(); int i = 0; int j = 0; int k; sb.append('\n').append("\""); while (i < ia.length) { k = ia[i++]; sb.append("\\u"); sb.append(HEX_DIGITS[(k >>> 28) & 0x0F]); sb.append(HEX_DIGITS[(k >>> 24) & 0x0F]); sb.append(HEX_DIGITS[(k >>> 20) & 0x0F]); sb.append(HEX_DIGITS[(k >>> 16) & 0x0F]); sb.append("\\u"); sb.append(HEX_DIGITS[(k >>> 12) & 0x0F]); sb.append(HEX_DIGITS[(k >>> 8) & 0x0F]); sb.append(HEX_DIGITS[(k >>> 4) & 0x0F]); sb.append(HEX_DIGITS[k & 0x0F]); if ((++j % 4) == 0) { sb.append("\"+").append('\n').append("\""); } } sb.append("\"").append('\n'); return sb.toString(); } public static byte[] toBytesFromUnicode(String s) { int limit = s.length() * 2; byte[] result = new byte[limit]; char c; for (int i = 0; i < limit; i++) { c = s.charAt(i >>> 1); result[i] = (byte) (((i & 1) == 0) ? c >>> 8 : c); } return result; } /** *

* Dumps a byte array as a string, in a format that is easy to read for * debugging. The string m is prepended to the start of each * line.

* *

* If offset and length are omitted, the whole * array is used. If m is omitted, nothing is prepended to each * line.

* * @param data the byte array to be dumped. * @param offset the offset within data to start from. * @param length the number of bytes to dump. * @param m a string to be prepended to each line. * @return a string containing the result. */ public static String dumpString(byte[] data, int offset, int length, String m) { if (data == null) { return m + "null\n"; } StringBuffer sb = new StringBuffer(length * 3); if (length > 32) { sb.append(m).append("Hexadecimal dump of ").append(length).append(" bytes...\n"); } // each line will list 32 bytes in 4 groups of 8 each int end = offset + length; String s; int l = Integer.toString(length).length(); if (l < 4) { l = 4; } for (; offset < end; offset += 32) { if (length > 32) { s = " " + offset; sb.append(m).append(s.substring(s.length() - l)).append(": "); } int i = 0; for (; i < 32 && offset + i + 7 < end; i += 8) { sb.append(toString(data, offset + i, 8)).append(' '); } if (i < 32) { for (; i < 32 && offset + i < end; i++) { sb.append(byteToString(data[offset + i])); } } sb.append('\n'); } return sb.toString(); } public static String dumpString(byte[] data) { return (data == null) ? "null\n" : dumpString(data, 0, data.length, ""); } public static String dumpString(byte[] data, String m) { return (data == null) ? "null\n" : dumpString(data, 0, data.length, m); } public static String dumpString(byte[] data, int offset, int length) { return dumpString(data, offset, length, ""); } /** *

* Returns a string of 2 hexadecimal digits (most significant digit first) * corresponding to the lowest 8 bits of n.

* * @param n the byte value to convert. * @return a string of 2 hex characters representing the input. */ public static String byteToString(int n) { char[] buf = {HEX_DIGITS[(n >>> 4) & 0x0F], HEX_DIGITS[n & 0x0F]}; return new String(buf); } /** *

* Converts a designated byte array to a Base-64 representation, with the * exceptions that (a) leading 0-byte(s) are ignored, and (b) the character * '.' (dot) shall be used instead of "+' (plus).

* *

* Used by SASL password file manipulation primitives.

* * @param buffer an arbitrary sequence of bytes to represent in Base-64. * @return unpadded (without the '=' character(s)) Base-64 representation of * the input. */ public static final String toBase64(byte[] buffer) { int len = buffer.length, pos = len % 3; byte b0 = 0, b1 = 0, b2 = 0; switch (pos) { case 1: b2 = buffer[0]; break; case 2: b1 = buffer[0]; b2 = buffer[1]; break; } StringBuffer sb = new StringBuffer(); int c; boolean notleading = false; do { c = (b0 & 0xFC) >>> 2; if (notleading || c != 0) { sb.append(BASE64_CHARSET[c]); notleading = true; } c = ((b0 & 0x03) << 4) | ((b1 & 0xF0) >>> 4); if (notleading || c != 0) { sb.append(BASE64_CHARSET[c]); notleading = true; } c = ((b1 & 0x0F) << 2) | ((b2 & 0xC0) >>> 6); if (notleading || c != 0) { sb.append(BASE64_CHARSET[c]); notleading = true; } c = b2 & 0x3F; if (notleading || c != 0) { sb.append(BASE64_CHARSET[c]); notleading = true; } if (pos >= len) { break; } else { try { b0 = buffer[pos++]; b1 = buffer[pos++]; b2 = buffer[pos++]; } catch (ArrayIndexOutOfBoundsException x) { break; } } } while (true); if (notleading) { return sb.toString(); } return "0"; } /** *

* The inverse function of the above.

* *

* Converts a string representing the encoding of some bytes in Base-64 to * their original form.

* * @param str the Base-64 encoded representation of some byte(s). * @return the bytes represented by the str. * @throws NumberFormatException if str is null, * or str contains an illegal Base-64 character. * @see #toBase64(byte[]) */ public static final byte[] fromBase64(String str) { int len = str.length(); if (len == 0) { throw new NumberFormatException("Empty string"); } byte[] a = new byte[len + 1]; int i, j; for (i = 0; i < len; i++) { try { a[i] = (byte) BASE64_CHARS.indexOf(str.charAt(i)); } catch (ArrayIndexOutOfBoundsException x) { throw new NumberFormatException("Illegal character at #" + i); } } i = len - 1; j = len; try { while (true) { a[j] = a[i]; if (--i < 0) { break; } a[j] |= (a[i] & 0x03) << 6; j--; a[j] = (byte) ((a[i] & 0x3C) >>> 2); if (--i < 0) { break; } a[j] |= (a[i] & 0x0F) << 4; j--; a[j] = (byte) ((a[i] & 0x30) >>> 4); if (--i < 0) { break; } a[j] |= (a[i] << 2); j--; a[j] = 0; if (--i < 0) { break; } } } catch (Exception ignored) { } try { // ignore leading 0-bytes while (a[j] == 0) { j++; } } catch (Exception x) { return new byte[1]; // one 0-byte } byte[] result = new byte[len - j + 1]; System.arraycopy(a, j, result, 0, len - j + 1); return result; } // BigInteger utilities ---------------------------------------------------- /** *

* Treats the input as the MSB representation of a number, and discards * leading zero elements. For efficiency, the input is simply returned if no * leading zeroes are found.

* * @param n the {@link BigInteger} to trim. * @return the byte array representation of the designated * {@link BigInteger} with no leading 0-bytes. */ public static final byte[] trim(BigInteger n) { byte[] in = n.toByteArray(); if (in.length == 0 || in[0] != 0) { return in; } int len = in.length; int i = 1; while (in[i] == 0 && i < len) { ++i; } byte[] result = new byte[len - i]; System.arraycopy(in, i, result, 0, len - i); return result; } /** *

* Returns a hexadecimal dump of the trimmed bytes of a {@link BigInteger}. *

* * @param x the {@link BigInteger} to display. * @return the string representation of the designated {@link BigInteger}. */ public static final String dump(BigInteger x) { return dumpString(trim(x)); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy